Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(11): 113602    DOI: 10.1088/1674-1056/19/11/113602
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

The density functional calculations on the structural and electronic properties of the endohedral fullerene dimer (N2@C60)2

Gao Hong(高虹)a), Zhu Wei-Hua(朱卫华)a), Tang Chun-Mei(唐春梅)a), Geng Fang-Fang(耿芳芳)a), Yao Chang-Da(姚长达)a), Xu Yun-Ling(徐云玲)a), and Deng Kai-Ming(邓开明)b)
a College of Science, Hohai University, Nanjing 210098, China; b Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract  The generalised gradient approximation based on density functional theory is used to study the structural and electronic properties of the endohedral fullerene dimer (N2@C60)2. Four N atoms sit at the cage centres in the form of two N2 molecules. The density of states and Mulliken charge analysis explore that the energy levels from -6 to -10 eV are mainly influenced by the N2 molecules.
Keywords:  (C60)2      (N2@C60)2 dimer      electronic property      density functional  
Received:  03 February 2010      Revised:  30 March 2010      Accepted manuscript online: 
PACS:  31.15.E-  
  36.40.Cg (Electronic and magnetic properties of clusters)  
Fund: Project supported by the Special Foundation of National Natural Science (Grant No. 10947132), the Fundamental Research Funds for the Central Universities, the Research Starting Foundation of Hohai University (Grant No. 2084/40801130), the Natural Science Foundation of Hohai University (Grant Nos. 2008431211 and 2008430311), and the Excellent Innovation Personal Support Plan of Hohai University.

Cite this article: 

Gao Hong(高虹), Zhu Wei-Hua(朱卫华), Tang Chun-Mei(唐春梅), Geng Fang-Fang(耿芳芳), Yao Chang-Da(姚长达), Xu Yun-Ling(徐云玲), and Deng Kai-Ming(邓开明) The density functional calculations on the structural and electronic properties of the endohedral fullerene dimer (N2@C60)2 2010 Chin. Phys. B 19 113602

[1] Kroto H W, Heath J R, O'Brien S C, Curl R F and Smalley R E 1985 Nature 318 162
[2] Salas R E E and Valladares A A 2008 J. Mol. Struct: Theochem. 869 1
[3] Ren X Y and Liu Z Y 2005 Struct. Chem. 16 567
[4] Wang Y, Holden J M, Bi X X and Ekiund P C 1994 Chem. Phys. Lett. 217 413
[5] Iwasa Y, Srima T, Fleming R M and Siegrist T 1994 Science 264 1570
[6] Pekker S, Janossy A, Mihaly L, Chauvet O, Carrard M and Forro L 1994 Science 265 1077
[7] Pederson M R and Quong A A 1995 Phys. Rev. Lett. 74 2319
[8] Wang G W, Komatsu K, Murata Y and Shiro M 1997 Nature 387 583
[9] Haufler R E, Wang L S, Chibante L P F, Jin C M, Conceicao J, Chai Y and Smalley R E 1991 Chem. Phys. Lett. 179 449
[10] Adams G B, Page J B, Sankey O F and O'Keeffe M 1994 Phys. Rev. B 50 17471
[11] K"urti J and N'emeth K 1996 Chem. Phys. Lett. 256 119
[12] Komatsu K, Murata M and Murata Y 2005 Science 307 238
[13] Cao B, Peres T, Cross R J, Saunders M and Lifshitz C 2001 J. Phys. Chem. A bf 105 2142
[14] Suetsuna T, Dragoe N, Harneit W, Weidinger A, Shimotani H, Ito S, Takagi H and Kitazawa K 2002 Chemistry 8 5079
[15] Peres T, Cao B P, Cui W D, Khong A, Cross R J, Saunders M and Lifshitz C 2001 Int. J. Mass Spectrom. 210 241
[16] Gao H, Zhu W H, Tang C M, Geng F F, Yao C D, Xu Y L and Deng K M 2010 Acta. Phys. Sin. 59 1707 (in Chinese)
[17] San D 1996 Dmol. Biosym. Technologics CA
[18] Tang C M, Yuan Y B, Deng K M and Yang J L 2006 Acta. Phys. Sin. 55 3601 (in Chinese)
[19] Becke A D 1988 J. Chem. Phys. 88 1053
[20] Hohenberg P and Kohn W 1964 Phys. Rev. B 136 864
[21] Delley I B 1990 J. Chem. Phys. 92 508
[22] Kohn W and Sham L J 1965 Phys. Rev. A 140 1133
[23] Tang C M, Zhu W H and Deng K M 2010 Chin. Phys. B 19 033604
[24] Tang C M, Cao Q S, Zhu W H and Deng K M 2010 Chin. Phys. B 19 033603
[25] Hawkins J M, Meyer A, Lewis T A, Loren S and Hollander F J 1991 Science 252 312
[26] Leclercg F, Damay P, Foukani M, Foukani M, Chieux P, Bellissent-Funel M C, Rasat A and Fabre C 1993 Phys. Rev. B 48 2748
[27] Hedberg K, Hedberg L, Bethune D S, Brown C A, Dorn H C, Johnson R D and Vries M D 1991 Science 254 410
[28] Pederson M R and Quong A A 1995 Phys. Rev. Lett. 74 2319
[29] Lu G L, Yuan Y B, Deng K M, Wu H P, Yang J L and Wang X 2006 Chem. Phys. Lett. 424 142
[30] Lu L H, Chen C and Sun K C 1998 Int. J. Quant. Chem. 68 273
[31] Chang Y F, Zhang J P, Hong B, Sun H, An Z and Wang R S 2005 J. Chem. Phys. 123 094305
[32] Hong B, Chang Y F, Qiu Y Q, Sun H, Su Z M and Wang R S 2006 J. Chem. Phys. 124 144108
[33] Saunders M, Cross R J, Jimenez-Vazquez H A, Shimshi R and Khong A 1996 Science 271 1693
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Structural and thermodynamic properties of inhomogeneous fluids in rectangular corrugated nano-pores
Yanshuang Kang(康艳霜), Haijun Wang(王海军), and Zongli Sun(孙宗利). Chin. Phys. B, 2022, 31(5): 056104.
[12] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[13] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[14] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[15] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
No Suggested Reading articles found!