|
|
The density functional calculations on the structural and electronic properties of the endohedral fullerene dimer (N2@C60)2 |
Gao Hong(高虹)a), Zhu Wei-Hua(朱卫华)a), Tang Chun-Mei(唐春梅)a)†, Geng Fang-Fang(耿芳芳)a), Yao Chang-Da(姚长达)a), Xu Yun-Ling(徐云玲)a), and Deng Kai-Ming(邓开明)b) |
a College of Science, Hohai University, Nanjing 210098, China; b Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China |
|
|
Abstract The generalised gradient approximation based on density functional theory is used to study the structural and electronic properties of the endohedral fullerene dimer (N2@C60)2. Four N atoms sit at the cage centres in the form of two N2 molecules. The density of states and Mulliken charge analysis explore that the energy levels from -6 to -10 eV are mainly influenced by the N2 molecules.
|
Received: 03 February 2010
Revised: 30 March 2010
Accepted manuscript online:
|
PACS:
|
31.15.E-
|
|
|
36.40.Cg
|
(Electronic and magnetic properties of clusters)
|
|
Fund: Project supported by the Special Foundation of National Natural Science (Grant No. 10947132), the Fundamental Research Funds for the Central Universities, the Research Starting Foundation of Hohai University (Grant No. 2084/40801130), the Natural Science Foundation of Hohai University (Grant Nos. 2008431211 and 2008430311), and the Excellent Innovation Personal Support Plan of Hohai University. |
Cite this article:
Gao Hong(高虹), Zhu Wei-Hua(朱卫华), Tang Chun-Mei(唐春梅), Geng Fang-Fang(耿芳芳), Yao Chang-Da(姚长达), Xu Yun-Ling(徐云玲), and Deng Kai-Ming(邓开明) The density functional calculations on the structural and electronic properties of the endohedral fullerene dimer (N2@C60)2 2010 Chin. Phys. B 19 113602
|
[1] |
Kroto H W, Heath J R, O'Brien S C, Curl R F and Smalley R E 1985 Nature 318 162
|
[2] |
Salas R E E and Valladares A A 2008 J. Mol. Struct: Theochem. 869 1
|
[3] |
Ren X Y and Liu Z Y 2005 Struct. Chem. 16 567
|
[4] |
Wang Y, Holden J M, Bi X X and Ekiund P C 1994 Chem. Phys. Lett. 217 413
|
[5] |
Iwasa Y, Srima T, Fleming R M and Siegrist T 1994 Science 264 1570
|
[6] |
Pekker S, Janossy A, Mihaly L, Chauvet O, Carrard M and Forro L 1994 Science 265 1077
|
[7] |
Pederson M R and Quong A A 1995 Phys. Rev. Lett. 74 2319
|
[8] |
Wang G W, Komatsu K, Murata Y and Shiro M 1997 Nature 387 583
|
[9] |
Haufler R E, Wang L S, Chibante L P F, Jin C M, Conceicao J, Chai Y and Smalley R E 1991 Chem. Phys. Lett. 179 449
|
[10] |
Adams G B, Page J B, Sankey O F and O'Keeffe M 1994 Phys. Rev. B 50 17471
|
[11] |
K"urti J and N'emeth K 1996 Chem. Phys. Lett. 256 119
|
[12] |
Komatsu K, Murata M and Murata Y 2005 Science 307 238
|
[13] |
Cao B, Peres T, Cross R J, Saunders M and Lifshitz C 2001 J. Phys. Chem. A bf 105 2142
|
[14] |
Suetsuna T, Dragoe N, Harneit W, Weidinger A, Shimotani H, Ito S, Takagi H and Kitazawa K 2002 Chemistry 8 5079
|
[15] |
Peres T, Cao B P, Cui W D, Khong A, Cross R J, Saunders M and Lifshitz C 2001 Int. J. Mass Spectrom. 210 241
|
[16] |
Gao H, Zhu W H, Tang C M, Geng F F, Yao C D, Xu Y L and Deng K M 2010 Acta. Phys. Sin. 59 1707 (in Chinese)
|
[17] |
San D 1996 Dmol. Biosym. Technologics CA
|
[18] |
Tang C M, Yuan Y B, Deng K M and Yang J L 2006 Acta. Phys. Sin. 55 3601 (in Chinese)
|
[19] |
Becke A D 1988 J. Chem. Phys. 88 1053
|
[20] |
Hohenberg P and Kohn W 1964 Phys. Rev. B 136 864
|
[21] |
Delley I B 1990 J. Chem. Phys. 92 508
|
[22] |
Kohn W and Sham L J 1965 Phys. Rev. A 140 1133
|
[23] |
Tang C M, Zhu W H and Deng K M 2010 Chin. Phys. B 19 033604
|
[24] |
Tang C M, Cao Q S, Zhu W H and Deng K M 2010 Chin. Phys. B 19 033603
|
[25] |
Hawkins J M, Meyer A, Lewis T A, Loren S and Hollander F J 1991 Science 252 312
|
[26] |
Leclercg F, Damay P, Foukani M, Foukani M, Chieux P, Bellissent-Funel M C, Rasat A and Fabre C 1993 Phys. Rev. B 48 2748
|
[27] |
Hedberg K, Hedberg L, Bethune D S, Brown C A, Dorn H C, Johnson R D and Vries M D 1991 Science 254 410
|
[28] |
Pederson M R and Quong A A 1995 Phys. Rev. Lett. 74 2319
|
[29] |
Lu G L, Yuan Y B, Deng K M, Wu H P, Yang J L and Wang X 2006 Chem. Phys. Lett. 424 142
|
[30] |
Lu L H, Chen C and Sun K C 1998 Int. J. Quant. Chem. 68 273
|
[31] |
Chang Y F, Zhang J P, Hong B, Sun H, An Z and Wang R S 2005 J. Chem. Phys. 123 094305
|
[32] |
Hong B, Chang Y F, Qiu Y Q, Sun H, Su Z M and Wang R S 2006 J. Chem. Phys. 124 144108
|
[33] |
Saunders M, Cross R J, Jimenez-Vazquez H A, Shimshi R and Khong A 1996 Science 271 1693
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|