Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(11): 113601    DOI: 10.1088/1674-1056/19/11/113601
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Density functional study of AunCu (n=1–7) clusters

Guo Jian-Jun(郭建军)a), Wei Cheng-Fu(魏成富)b), Yang Ji-Xian(杨继先)a), and Die Dong (迭东)a)
a Mianyang Normal University, Mianyang 621000, China; b School of Physics and Chemistry, Xihua University, Chengdu 610039, China
Abstract  The possible stable geometrical configurations and the relative stabilities of the lowest-lying isomers of copper-doped gold clusters, AunCu (n=1–7), are investigated using the density functional theory. Several low-lying isomers are determined. The results indicate that the ground-state AunCu clusters have planar structures for n = 1–7. The stability trend of the AunCu clusters (n=1–7), shows that odd-numbered AunCu clusters are more stable than the neighbouring even-numbered ones, thereby indicating the Au5Cu clusters are magic cluster with high chemical stability.
Keywords:  density functional theory      Au–Cu clusters      structure      stability  
Received:  12 March 2010      Revised:  26 April 2010      Accepted manuscript online: 
PACS:  31.15.E-  
  36.40.Cg (Electronic and magnetic properties of clusters)  
  36.40.Mr (Spectroscopy and geometrical structure of clusters)  
  36.40.Qv (Stability and fragmentation of clusters)  
Fund: Project supported by the Foundation from the Education Commission of Sichuan Province, China (Grant No. 2006B042).

Cite this article: 

Guo Jian-Jun(郭建军), Wei Cheng-Fu(魏成富), Yang Ji-Xian(杨继先), and Die Dong (迭东) Density functional study of AunCu (n=1–7) clusters 2010 Chin. Phys. B 19 113601

[1] Die D, Kuang X Y, Guo J J and Zheng B X 2009 J. Mol. Struct. (Theochem) 902 54
[2] Mao H P, Wang H Y and Sheng Y 2008 Chin. Phys. B 17 2110
[3] Hao F, Zhao Y, Li X and Liu F 2007 J. Mol. Struct. Theochem. 807 153
[4] Wu Z J 2005 Chem. Phys. Lett. 406 24
[5] Koyasu K, Naono Y, Akutsu M, Mitsui M and Nakajima A 2006 Chem. Phys. Lett. 422 62
[6] Xu Y, Xu C, Zhou T and Cheng C 2009 J. Mol. Struct. (Theochem.) 893 88
[7] Sinfelt J H 1983 Bimetallic Catalysis: Discoveries Concepts and Applications (New York: Wiley) p367
[8] Zhao Y, Jing X and Su W 2002 J. Mol. Struct. (Theochem.) bf 587 43
[9] Liu F L, Zhao Y F, Li X Y and Hao F Y 2007 J. Mol. Struct. (Theochem.) 809 189
[10] Li X, Kuznetsov A E, Zhang H F, Boldyrev A I and Wang L S 2001 it Science 291 859
[11] Mao H P, Wang H Y, Zhu Z H and Tang Y J 2006 Acta Phys. Sin. 55 4542 (in Chinese)
[12] Yuan D W, Wang Y and Zeng Z 2005 J. Chem. Phys. 122 114310
[13] Deschpande M, Dhavale A, Zope R R, Chacko C and Kanhere D G 2000 Phys. Rev. A 62 063202
[14] Baruah T, Blundell S A and Zope R R 2001 Phys. Rev. A 64 043202
[15] Deshpande M D, Kanhere D G, Vasiliev I and Martin R M 2003 it Phys. Rev. B 68 035428
[16] Guo J J, Yang J X, Die D, Yu G F and Jiang G 2005 Acta Phys. Sin. 54 3571 (in Chinese)
[17] Wang F and Liu W 2005 Chem. Phys. 311 63
[18] Deka A and Deka R C 2008 J. Mol. Struct. (Theochem.) 870 83
[19] Koszinowski K, Schr"oder D and Schwarz H 2003 Chem. Phys. Chem. 4 1233
[20] H"akkinen H, Abbet S, Sanchez A, Heiz U, Landman U and Angew 2003 Chem. Int. Ed. 42 1297
[21] Wang H Y, Li X B, Tang Y J, King R B and Schaefer H F 2007 Chin. Phys. 16 1660
[22] Zhao L X, Feng X J, Cao T T, Liang X and Luo Y H 2009 Chin. Phys. B 18 2709
[23] Bouwen W, Vanhoutte F, Despa F, Bouckaert S, Neukermans S, Kuhn L T, Weidele H, Lievens P and Silverans R E 1999 Chem. Phys. Lett. 314 227
[24] Heinebrodt M, Malinowski N, Tast F, Branz W, Billas I M L and Martin T P 1999 J. Chem. Phys. 110 9915
[25] Becke A D 1988 Phys. Rev. A 38 3098
[26] Lee C, Yang W and Parr R G 1988 Phys. Rev. B 37 785
[27] Wadt W R and Hay P J 1985 J. Chem. Phys. 82 284
[28] Frisch M J, Trucks G W, Schlegel H B et al. 2003 it Gaussian 03 (Pittsburgh PA: Gaussian Inc.)
[29] Morse M D 1986 Chem. Rev. 86 1049
[30] Bishea G A and Morse M D 1991 J. Chem. Phys. 91 5646
[31] Bishea G A, Pinegar J C and Morse M D 1995 J. Chem. Phys. bf 95 5630
[1] Resonant perfect absorption of molybdenum disulfide beyond the bandgap
Hao Yu(于昊), Ying Xie(谢颖), Jiahui Wei(魏佳辉), Peiqing Zhang(张培晴),Zhiying Cui(崔志英), and Haohai Yu(于浩海). Chin. Phys. B, 2023, 32(4): 048101.
[2] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[3] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[4] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[5] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[6] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[7] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[8] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[9] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[10] Spin pumping by higher-order dipole-exchange spin-wave modes
Peng Wang(王鹏). Chin. Phys. B, 2023, 32(3): 037601.
[11] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[12] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[13] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[14] High performance carrier stored trench bipolar transistor with dual shielding structure
Jin-Ping Zhang(张金平), Hao-Nan Deng(邓浩楠), Rong-Rong Zhu(朱镕镕), Ze-Hong Li(李泽宏), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(3): 038501.
[15] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
No Suggested Reading articles found!