|
|
Ab initio investigations of the charge transport properties of endohedral M@C20 (M= Na and K) metallofullerenes |
An Yi-Peng (安义鹏), Yang Chuan-Lu(杨传路)†, Wang Mei-Shan(王美山), Ma Xiao-Guang(马晓光), and Wang De-Hua(王德华) |
School of Physics, Ludong University, Yantai 264025, China |
|
|
Abstract Using density functional theory and quantum transport calculations based on nonequilibum Green's function formalism, we investigate the charge transport properties of endohedral M@C20 (M= Na and K) metallofullerenes. Our results show that the conductance of C20 fullerene can be obviously improved by insertion of alkali atom at its centre. Both linear and nonlinear sections are found on the I-V curves of the Au-M@C20-Au two-probe systems. The novel negative differential resistance behaviour is also observed in Na@C20 molecule but not in K@C20.
|
Received: 01 March 2010
Revised: 06 March 2010
Accepted manuscript online:
|
PACS:
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
71.20.Tx
|
(Fullerenes and related materials; intercalation compounds)
|
|
72.80.Rj
|
(Fullerenes and related materials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10674114 and 10974078). |
Cite this article:
An Yi-Peng (安义鹏), Yang Chuan-Lu(杨传路), Wang Mei-Shan(王美山), Ma Xiao-Guang(马晓光), and Wang De-Hua(王德华) Ab initio investigations of the charge transport properties of endohedral M@C20 (M= Na and K) metallofullerenes 2010 Chin. Phys. B 19 113402
|
[1] |
Reed M A, Zhou C, Muller C J, Burgin T P and Tour J M 1997 it Science 278 252
|
[2] |
Koch J, Raikh M E and Von Oppen F 2006 Phys. Rev. Lett. 96 056803
|
[3] |
Zhang C, Du M H, Cheng H P, Zhang X G, Roitberg A E and Krause J L 2004 Phys. Rev. Lett. 92 158301
|
[4] |
Bauschlicher Jr C W and Lawson J W 2007 Phys. Rev. B bf 75 115406
|
[5] |
Reed M A, Chen J, Rawlett A M, Price D W and Tour J M 2001 it Appl. Phys. Lett. 78 3735
|
[6] |
Staykov A, Nozaki D and Yoshizawa K 2007 J. Phys. Chem. C 111 1699
|
[7] |
Zhou Y H, Zheng X H, Xu Y and Zeng Z Y 2006 J. Chem. Phys. 125 2447011
|
[8] |
Datta S 1995 Electronic Transport in Mesoscopic System (Cambridge: Cambridge University Press)
|
[9] |
Ventra M D 2008 Electrical Transport in Nanoscale Systems (Cambridge: Cambridge University Press)
|
[10] |
Chen J, Reed M A, Rawlett A M and Tour J M 1999 Science 286 1550
|
[11] |
Esaki L 1958 Phys. Rev. 109 603
|
[12] |
Sen S and Chakrabarti S 2008 J. Phys. Chem. C 112 1685
|
[13] |
Gittins D I, Bethell D, Schiffrin D J and Nichols R J 2000 it Nature 408 67
|
[14] |
Ono T and Hirose K 2007 Phys. Rev. Lett. 98 026804
|
[15] |
Noya EG, Srivastava D and Menon M 2009 Phys. Rev. B bf 79 115432
|
[16] |
Andres R P, Bein T, Dorogi M, Feng S, Henderson J I, Kubiak C P, William M, Osifchin R G and Reifenberger R 1996 it Science 272 1323
|
[17] |
Kroto H W, Heath J R, O'Brien S C, Curl R F and Smalley R E 1985 Nature 318 162
|
[18] |
An Y P, Yang C L, Wang M S, Ma X G and Wang D H 2009 J. Chem. Phys. 131 024311
|
[19] |
Romero N A, Kim J and Martin R M 2007 Phys. Rev. B bf 76 205405
|
[20] |
Devos A and Lannoo M 1998 Phys. Rev. B 58 8236
|
[21] |
An Y P, Yang C L, Wang M S, Ma X G and Wang D H 2010 Curr. Appl. Phys. 10 260
|
[22] |
Taylor J, Guo H and Wang J 2001 Phys. Rev. B 63 121104
|
[23] |
Brandbyge M, Mozos J L, Ordejon P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401
|
[24] |
Soler J M, Artacho E, Gale J D, Garc'hia A, Junquera J, Ordej'on P and S'anchez-Portal D 2002 J. Phys.: Condens. Matter 14 2745
|
[25] |
Taylor J, Guo H and Wang J 2001 Phys. Rev. B 63 245407
|
[26] |
Xia C J, Fang C F, Hu G C, Li D M, Liu D S, Xie S J and Zhao M W 2008 Acta Phys. Sin. 57 3148
|
[27] |
Chen X C, Yang J, Zhou Y H and Xu Y 2009 Acta Phys. Sin. 58 3064 (in Chinese)
|
[28] |
An Y P, Yang C L, Wang M S, Ma X G and Wang D H 2010 Acta Phys. Sin. bf59 2010 (in Chinese)
|
[29] |
Troullier N and Martins J L 1991 Phys. Rev. B 43 1993
|
[30] |
Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
|
[31] |
B"uttiker M, Imry Y, Landauer R and Pinhas S 1985 Phys. Rev. B 31 6207
|
[32] |
Brandbyge M, Sorensen M R and Jacobsen K W 1997 Phys. Rev. B 56 14956
|
[33] |
Delley B 1990 J. Chem. Phys. 92 508
|
[34] |
Perdew J P and Wang Y 1992 Phys. Ref. B 45 13244
|
[35] |
Yang C L, Wang M S, Sun M Y, Wang D H, Ma X G and Gong Y B 2008 Chem. Phys. Lett. 457 49
|
[36] |
Sun M Y, Yang C L, Wang M S, Gong Y B, Zhu Y T and Liu W 2008 J. Phys. Chem. A 112 4556
|
[37] |
Yang C L, An Y P, Sun M Y, Wang M S, Wang D H, Ma X G and Gong Y B 2009 Chem. Phys. Lett. 474 311
|
[38] |
Li Y C, Yang C L, Sun M Y, Li X X, An Y P, Wang M S, Ma X G and Wang D H 2009 J. Phys. Chem. A 113 1353
|
[39] |
McWhorter A L and Foyt A G 1966 Appl. Phys. Lett. 9 300
|
[40] |
Brown E R, S"oerstr"om J R, Parker C D, Mahoney L J and Molvar K M 1991 Appl. Phys. Lett. 58 2291
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|