Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 113101    DOI: 10.1088/1674-1056/24/11/113101
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Stark-potential evaporative cooling of polar molecules in a novel optical-access opened electrostatic trap

Sun Hui (孙慧), Wang Zhen-Xia (王振霞), Wang Qin (王琴), Li Xing-Jia (李兴佳), Liu Jian-Ping (刘建平), Yin Jian-Ping (印建平)
State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
Abstract  We propose a novel optical-access opened electrostatic trap to study the Stark-potential evaporative cooling of polar molecules by using two charged disk electrodes with a central hole of radius r0=1.5 mm, and derive a set of new analytical equations to calculate the spatial distributions of the electrostatic field in the above charged-disk layout. Afterwards, we calculate the electric-field distributions of our electrostatic trap and the Stark potential for cold ND3 molecules, and analyze the dependences of both the electric field and the Stark potential on the geometric parameters of our charged-disk scheme, and find an optimal condition to form a desirable trap with the same trap depth in the x, y, and z directions. Also, we propose a desirable scheme to realize an efficient loading of cold polar molecules in the weak-field-seeking states, and investigate the dependences of the loading efficiency on both the initial forward velocity of the incident molecular beam and the loading time by Monte Carlo simulations. Our study shows that the maximal loading efficiency of our trap scheme can reach about 95%, and the corresponding temperature of the trapped cold molecules is about 28.8 mK. Finally, we study the Stark-potential evaporative cooling for cold polar molecules in our trap by the Monte Carlo method, and find that our simulated evaporative cooling results are consistent with our developed analytical model based on trapping-potential evaporative cooling.
Keywords:  evaporative cooling      electrostatic trap      Monte Carlo simulations  
Received:  28 April 2015      Revised:  08 July 2015      Accepted manuscript online: 
PACS:  31.15.-p (Calculations and mathematical techniques in atomic and molecular physics)  
  37.10.Mn (Slowing and cooling of molecules)  
  37.10.Pq (Trapping of molecules)  
Corresponding Authors:  Yin Jian-Ping     E-mail:  jpyin@phy.ecnu.edu.cn

Cite this article: 

Sun Hui (孙慧), Wang Zhen-Xia (王振霞), Wang Qin (王琴), Li Xing-Jia (李兴佳), Liu Jian-Ping (刘建平), Yin Jian-Ping (印建平) Stark-potential evaporative cooling of polar molecules in a novel optical-access opened electrostatic trap 2015 Chin. Phys. B 24 113101

[1] Bethlem H L, Berden G, Crompvoets F M H, Jongma R T, van Roji A J A and Meijer G;2000 Nature 406 491
[2] van Veldhoven J, Bethlem H L and Meijer G;2005 Phys. Rev. Lett. 94 083001
[3] van Veldhoven J, Bethlem H L, Schnell M and Meijer G;2006 Phys. Rev. A 73 063408
[4] Sawyer B C, Lev B L, Hudson E R, Stuhl B K, Lara M, Bohn J L and Ye J;2007 Phys. Rev. Lett. 98 253002
[5] Kleinert J, Haimberger C, Zabawa P J and Bigelow N P;2007 Phys. Rev. Lett. 99 143002
[6] Schnell M, Ltzow P, van Veldhoven J, Bethlem H L, Kpper J, Friedrich B, Schleier-Smith M, Haak H and Meijer G;2007 J. Phys. Chem. A 111 7411
[7] Sawyer B C, Stuhl B K, Wang D J, Yeo M and Ye J;2008 Phys. Rev. Lett. 101 203203
[8] Stuhl B K, Hummon M T, Yeo M, Quemener G, Bohn J L and Ye J;2012 Nature 492 396
[9] Zhu B, Quemener G, Rey A M and Holland MJ;2013 Phys. Rev. A 88 063405
[10] Wang Z, Gu Z, Xia Y, Ji X, and Yin J;2013 J. Opt. Soc. Am. B 30 2348
[11] Wang Q, Li S Q, Hou S Y, Xia Y, Wang H L and Yin J P 2014 Chin. Phys. B 23 013701
[12] Wang Z X, Gu Z X, Deng L Z and Yin J P;2015 Chin. Phys. B 24 053701
[13] Hayt W H and Buck J A 2001 Engineering Electromagnetic (6th Edn.) p. 195
[14] Davis K B, Mewes M O and Ketterle W 1995 Appl. Phys. B 60 155
[15] Burnett K, Julienne P S, Lett P D, Tiesinga E and Williams C J;2002 Nature 416 225
[16] Bohn J L;2001 Phys. Rev. A 63 052714
[17] Willitsch S, Bell M T, Gingell A D, Procter S R and Softley T P;2008 Phys. Rev. Lett. 100 043203
[18] van Veldhoven J, Kpper J, Bethlem H L, Sartakov B, van Roij A J A and Meijer G;2004 Eur. Phys. J. D 31 337
[19] Hudson E R, Lewandowski H J, Sawyer B C and Ye J;2006 Phys. Rev. Lett. 96 143004
[20] Yin J;2006 Phys. Rep. 430 1
[21] Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y and Ye J;2013 Phys. Rev. Lett. 110 143001
[22] Barry J F, McCarron D J, Norrgard E B, Steiecker M H and DeMille D;2014 Nature 512 286
[23] Raab E L, Prentiss M, Alex C, Steven C and Pritchard D E;1987 Phys. Rev. Lett. 59 2613
[24] Child M S 1996 Molecular Collision Theory 76 (New York: Dover Publications)
[25] Avdeenkov A V and Bohn J L;2002 Phys. Rev. A 66 052718
[1] Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉). Chin. Phys. B, 2021, 30(7): 074206.
[2] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[3] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[4] Magnetic properties of La2CuMnO6 double perovskite ceramic investigated by Monte Carlo simulations
S Mtougui, I EL Housni, N EL Mekkaoui, S Ziti, S Idrissi, H Labrim, R Khalladi, L Bahmad. Chin. Phys. B, 2020, 29(5): 056101.
[5] Two types of highly efficient electrostatic traps for single loading or multi-loading of polar molecules
Bin Wei(魏斌), Hengjiao Guo(郭恒娇), Yabing Ji(纪亚兵), Shunyong Hou(侯顺永), Jianping Yin(印建平). Chin. Phys. B, 2020, 29(4): 043701.
[6] Collision of cold CaF molecules: Towards evaporative cooling
Yuefeng Gu(顾跃凤), Yunxia Huang(黄云霞), Chuanliang Li(李传亮), Xiaohua Yang(杨晓华). Chin. Phys. B, 2019, 28(3): 033401.
[7] Effect of particle size distribution on magnetic behavior of nanoparticles with uniaxial anisotropy
S Rizwan Ali, Farah Naz, Humaira Akber, M Naeem, S Imran Ali, S Abdul Basit, M Sarim, Sadaf Qaseem. Chin. Phys. B, 2018, 27(9): 097503.
[8] Theoretical derivation and simulation of a versatileelectrostatic trap for cold polar molecules
Shengqiang Li(李胜强). Chin. Phys. B, 2016, 25(11): 113702.
[9] Effect of exchange interaction in ferromagnetic superlattices: A Monte Carlo study
R Masrour, A Jabar. Chin. Phys. B, 2016, 25(10): 107502.
[10] Phase equilibrium of Cd1-xZnxS alloys studied by first-principles calculations and Monte Carlo simulations
Fu-Zhen Zhang(张付珍), Hong-Tao Xue(薛红涛), Fu-Ling Tang(汤富领), Xiao-Kang Li(李小康), Wen-Jiang Lu(路文江), Yu-Dong Feng(冯煜东). Chin. Phys. B, 2016, 25(1): 013103.
[11] Kinetic Monte Carlo simulations of three-dimensional self-assembled quantum dot islands
Song Xin (宋鑫), Feng Hao (冯昊), Liu Yu-Min (刘玉敏), Yu Zhong-Yuan (俞重远), Yin Hao-Zhi (尹昊智). Chin. Phys. B, 2014, 23(1): 016802.
[12] Totally asymmetric exclusion processes at constrained m-input n-output junction points
Li Shao-Da (李少达), Liu Ming-Zhe (刘明哲), Pei Xiang-Jun (裴向军). Chin. Phys. B, 2013, 22(6): 060512.
[13] Monte Carlo study of nanowire magnetic properties
R. Masrour, L. Bahmad, A. Benyoussef. Chin. Phys. B, 2013, 22(5): 057504.
[14] Theoretical investigation of total-asymmetric simple exclusion processes with attachment and detachment
Xiao Song(肖松), Liu Ming-Zhe(刘明哲), Shang Jing(商晶), and Wang Hua(王华) . Chin. Phys. B, 2012, 21(2): 020514.
[15] Effect of unequal injection rates on asymmetric exclusion processes with junction
Xiao Song(肖松), Liu Ming-Zhe(刘明哲), Wang Jian-Jun(王建军), and Wang Hua(王华). Chin. Phys. B, 2011, 20(6): 060509.
No Suggested Reading articles found!