Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(10): 100204    DOI: 10.1088/1674-1056/19/10/100204
GENERAL Prev   Next  

Maintenance of cooperation induced by punishment in public goods games

Wang Zhen(王震)a),Xu Zhao-Jin(许照锦)b), Huang Jian-Hua(黄建华)a), and Zhang Lian-Zhong(张连众)a)
a School of Physics, Nankai University, Tianjin 300071, China; b School of Science, Tianjin University of Technology, Tianjin 300384, China
Abstract  In this paper, we study the public goods games with punishment by adopting the well-known approximate best response dynamics. It shows that the evolution of cooperation is affected by two aspects when other parameters are fixed. One is the punishment mechanism which can avoid the dilemma of lacking investment, and the other is the degree of rationality. Theoretical analysis and numerical results indicate that the existence of punishment mechanism and distribution of rationality are the keys to the enhancement of cooperation level. We also testify that they can heavily influence the payoffs of system as well. The findings in this paper may provide a deeper understanding of some social dilemmas.
Keywords:  public goods games      punishment      degree of rationality      evolution  
Received:  10 September 2009      Revised:  29 March 2010      Accepted manuscript online: 
PACS:  02.50.Le (Decision theory and game theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10672081).

Cite this article: 

Wang Zhen(王震),Xu Zhao-Jin(许照锦), Huang Jian-Hua(黄建华), and Zhang Lian-Zhong(张连众) Maintenance of cooperation induced by punishment in public goods games 2010 Chin. Phys. B 19 100204

[1] Binmore K G 1994 Playing Fair: Game Theory and the Social Contract (Cambridge: MIT Press)
[2] Colman A M 1995 Game Theory and Its Application in the Social and Biological Sciences (Oxford: Butterworth-Heinemann)
[3] Doebeli M and Hauert C 2005 Ecol. Lett. 8 748
[4] Hauert C, Holmes M and Doebeli M 2006 Proc. R. Soc. B bf273 2565
[5] Chen Y Z, Huang Z G, Wang S J, Zhang Y and Wang Y H 2009 Phys. Rev. E 79 055101(R)
[6] Wedekind C and Milinski M 2000 Science 288 850
[7] Hauert C, De Monte S, Hofhauer J and Sigmund K 2002 Science 296 1129
[8] Hauert C, De Monte S, Hofhauer J and Sigmund K 2002 J. Theor. Biol. 218 187
[9] Szabó G and Hauert C 2002 Phys. Rev. Lett. 89 118101
[10] Semmann D, Krambeck H and Milinski M 2003 Nature 425 390
[11] Traulsen A, Hauert C, De Silva H, Nowak M A and Sigmund K 2009 Proc. Nat. Acad. Sci. USA 106 709
[12] Szabó G and Fath G 2007 Phys. Rep. 446 97
[13] Hardin G 1968 Science 162 1243
[14] Hardin G 1998 Science 280 682
[15] Hofbauer J 2000 Selection bf1 81
[16] Guan J Y, Wu Z X and Wang Y H 2007 Phys. Rev. E 76 056101
[17] Wu T, Fu F and Wang L 2009 Phys. Rev. E 80 026121
[18] Shi D M, Yang H X, Hu M B, Du W B, Wang B H and Cao X B 2009 Physica A 388 4646
[19] Szolnoki A, Perc M and Szabó 2009 Phys. Rev. E 80 056109
[20] Feng C F, Xu X J, Wu Z X and Wang Y H 2008 Chin. Phys. B 17 1951
[21] Yang H X, Gao K, Han X P and Wang B H 2008 Chin. Phys. B 17 2759
[22] Hauert C and Szabó G 2003 Complexity 8 31
[23] Santos F C, Santos M D and Pacheco J M 2008 Nature 454 213
[24] Brandt H, Hauert C and Sigmund K 2006 Proc. Nat. Acad. Sci. USA 103 495
[25] Huang Z G, Wang S J, Xu X J and Wang Y H 2008 Europhys. Lett. 81 28001
[26] Peng D, Yang H Y, Wang W X, Chen G R and Wang B H 2010 Eur. Phys. J. B 73 455
[27] Sigmund K 2007 Trends Ecol. Evol. 22 593
[28] Sigmund K, Hauert C and Nowak M A 2001 Proc. Nat. Acad. Sci. USA 98 10757
[1] Evolution of donations on scale-free networks during a COVID-19 breakout
Xian-Jia Wang(王先甲) and Lin-Lin Wang(王琳琳). Chin. Phys. B, 2022, 31(8): 080204.
[2] Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞). Chin. Phys. B, 2022, 31(7): 077901.
[3] Evolution of surfaces and mechanisms of contact electrification between metals and polymers
Lin-Feng Wang(王林锋), Yi Dong(董义), Min-Hao Hu(胡旻昊), Jing Tao(陶静), Jin Li(李进), and Zhen-Dong Dai(戴振东). Chin. Phys. B, 2022, 31(6): 066202.
[4] Voter model on adaptive networks
Jinming Du(杜金铭). Chin. Phys. B, 2022, 31(5): 058902.
[5] Helium bubble formation and evolution in NiMo-Y2O3 alloy under He ion irradiation
Awen Liu(刘阿文), Hefei Huang(黄鹤飞), Jizhao Liu(刘继召), Zhenbo Zhu(朱振博), and Yan Li(李燕). Chin. Phys. B, 2022, 31(4): 046102.
[6] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
[7] C9N4 as excellent dual electrocatalyst: A first principles study
Wei Xu(许伟), WenWu Xu(许文武), and Xiangmei Duan(段香梅). Chin. Phys. B, 2021, 30(9): 096802.
[8] Role of graphene in improving catalytic behaviors of AuNPs/MoS2/Gr/Ni-F structure in hydrogen evolution reaction
Xian-Wu Xiu(修显武), Wen-Cheng Zhang(张文程), Shu-Ting Hou(侯淑婷), Zhen Li(李振), Feng-Cai Lei(雷风采), Shi-Cai Xu(许士才), Chong-Hui Li(李崇辉), Bao-Yuan Man(满宝元), Jing Yu(郁菁), and Chao Zhang(张超). Chin. Phys. B, 2021, 30(8): 088801.
[9] Mechanism of defect evolution in H+ and He+ implanted InP
Ren-Jie Liu(刘仁杰), Jia-Jie Lin(林家杰), N Daghbouj, Jia-Liang Sun(孙嘉良), Tian-Gui You(游天桂), Peng Gao(高鹏), Nie-Feng Sun(孙聂枫), and Min Liao(廖敏). Chin. Phys. B, 2021, 30(8): 086104.
[10] Effect of tellurium (Te4+) irradiation on microstructure and associated irradiation-induced hardening
Hefei Huang(黄鹤飞), Jizhao Liu(刘继召), Guanhong Lei(雷冠虹), Ondrej Muránsky, Tao Wei, and Mihail Ionescu. Chin. Phys. B, 2021, 30(5): 056108.
[11] Effects of heat transfer in a growing particle layer on microstructural evolution during solidification of colloidal suspensions
Jia-Xue You(游家学), Yun-Han Zhang(张运涵), Zhi-Jun Wang(王志军), Jin-Cheng Wang(王锦程), and Sheng-Zhong Liu(刘生忠). Chin. Phys. B, 2021, 30(2): 028103.
[12] Strain and interfacial engineering to accelerate hydrogen evolution reaction of two-dimensional phosphorus carbide
Tao Huang(黄韬), Yuan Si(思源), Hong-Yu Wu(吴宏宇), Li-Xin Xia(夏立新), Yu Lan(蓝郁), Wei-Qing Huang(黄维清), Wang-Yu Hu(胡望宇), and Gui-Fang Huang(黄桂芳). Chin. Phys. B, 2021, 30(2): 027101.
[13] Metal substrates-induced phase transformation of monolayer transition metal dichalcogenides for hydrogen evolution catalysis
Zhe Wang(王喆) and Wenguang Zhu(朱文光). Chin. Phys. B, 2021, 30(11): 116401.
[14] Oxygen vacancies and V co-doped Co3O4 prepared by ion implantation boosts oxygen evolution catalysis
Bo Sun(孙博), Dong He(贺栋), Hongbo Wang(王宏博), Jiangchao Liu(刘江超), Zunjian Ke(柯尊健), Li Cheng(程莉), and Xiangheng Xiao(肖湘衡). Chin. Phys. B, 2021, 30(10): 106102.
[15] Hydrogen isotopic replacement and microstructure evolution in zirconium deuteride implanted by 150 keV protons
Man Zhao(赵嫚), Mingxu Zhang(张明旭), Tao Wang(王韬), Jiangtao Zhao(赵江涛), Pan Dong(董攀), Zhen Yang(杨振), and Tieshan Wang(王铁山). Chin. Phys. B, 2021, 30(10): 106104.
No Suggested Reading articles found!