Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(3): 1237-1241    DOI: 10.1088/1674-1056/18/3/066
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Solution-based metal induced crystallization of a-Si

Wu Chun-Ya(吴春亚)a)b)c), Li Xue-Dong(李学冬)a)b)c), Zhao Shu-Yun(赵淑云)a)b)c), Li Juan(李娟)a)b)c), Meng Zhi-Guo(孟志国)a)b)c), Xiong Shao-Zhen(熊绍珍)a)b)c), and Zhang Fang(张芳)d)
a Institute of Photo-Electronics, Nankai University, Tianjin 300071, ChinaThe Tianjin Key Laboratory for Photo-electronic Thin Film Devices and Technology, Tianjin 300071, ChinaKey Laboratory of Opto-electronic Information Science and Technology (Nankai University and Tianjin University), the Ministry of Education, Tianjin 300071, China; d National High Technology Research and Development Center, the Ministry of Science and Technology, Beijing 100044, China
Abstract  This paper investigates a simplified metal induced crystallization (MIC) of a-Si, named solution-based MIC (S-MIC). The nickel inducing source was formed on a-Si from salt solution dissolved in de-ionized water or ethanol. a-Si thin film was deposited with low pressure chemical vapour deposition or plasma enhanced chemical vapour deposition as precursor material for MIC. It finds that the content of nickel source formed on a-Si can be controlled by solution concentration and dipping time. The dependence of crystallization rate of a-Si on annealing time illustrated that the linear density of nickel source was another critical factor that affects the crystallization of a-Si, besides the diffusion of nickel disilicide. The highest electron Hall mobility of thus prepared S-MIC poly-Si is 45.6cm2/(V$\cdot$s). By using this S-MIC poly-Si, thin film transistors and display scan drivers were made, and their characteristics are presented.
Keywords:  Ni-salt source      metal induced crystallization (MIC)      poly-Si      TFT  
Received:  27 June 2008      Revised:  05 September 2008      Accepted manuscript online: 
PACS:  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  81.40.Ef (Cold working, work hardening; annealing, post-deformation annealing, quenching, tempering recovery, and crystallization)  
  73.50.Jt (Galvanomagnetic and other magnetotransport effects)  
  73.61.Cw (Elemental semiconductors)  
  85.30.Tv (Field effect devices)  
Fund: Project supported by Key Project of National Natural Science Foundation of China (Grant No 60437030), ``863'' Project of National Ministry of Science and Technology of China (Grant No 2004AA33570), and Tianjin Natural Science Foundation of China (Grant No

Cite this article: 

Wu Chun-Ya(吴春亚), Li Xue-Dong(李学冬), Zhao Shu-Yun(赵淑云), Li Juan(李娟), Meng Zhi-Guo(孟志国), Xiong Shao-Zhen(熊绍珍), and Zhang Fang(张芳) Solution-based metal induced crystallization of a-Si 2009 Chin. Phys. B 18 1237

[1] High-performance amorphous In-Ga-Zn-O thin-film transistor nonvolatile memory with a novel p-SnO/n-SnO2 heterojunction charge trapping stack
Wen Xiong(熊文), Jing-Yong Huo(霍景永), Xiao-Han Wu(吴小晗), Wen-Jun Liu(刘文军),David Wei Zhang(张卫), and Shi-Jin Ding(丁士进). Chin. Phys. B, 2023, 32(1): 018503.
[2] Degradation mechanisms for polycrystalline silicon thin-film transistors with a grain boundary in the channel under negative gate bias stress
Dongli Zhang(张冬利), Mingxiang Wang(王明湘), and Huaisheng Wang(王槐生). Chin. Phys. B, 2022, 31(12): 128105.
[3] High-throughput fabrication and semi-automated characterization of oxide thin film transistors
Yanbing Han(韩炎兵), Sage Bauers, Qun Zhang(张群), Andriy Zakutayev. Chin. Phys. B, 2020, 29(1): 018502.
[4] Key technologies for dual high-k and dual metal gate integration
Yong-Liang Li(李永亮), Qiu-Xia Xu(徐秋霞), Wen-Wu Wang(王文武). Chin. Phys. B, 2018, 27(9): 097306.
[5] Crystallization of amorphous silicon beyond the crystallized polycrystalline silicon region induced by metal nickel
Dongli Zhang(张冬利), Mingxiang Wang(王明湘), Man Wong(王文), Hoi-Sing Kwok(郭海成). Chin. Phys. B, 2017, 26(1): 016601.
[6] Improvement in the electrical performance and bias-stress stability of dual-active-layered silicon zinc oxide/zinc oxide thin-film transistor
Yu-Rong Liu(刘玉荣), Gao-Wei Zhao(赵高位), Pai-To Lai(黎沛涛), Ruo-He Yao(姚若河). Chin. Phys. B, 2016, 25(8): 088503.
[7] Technology demonstration of a novel poly-Si nanowire thin film transistor
Libin Liu(刘立滨), Renrong Liang(梁仁荣), Bolin Shan(单柏霖), Jun Xu(许军), Jing Wang(王敬). Chin. Phys. B, 2016, 25(11): 118504.
[8] Positive gate-bias temperature instability of ZnO thin-film transistor
Liu Yu-Rong (刘玉荣), Su Jing (苏晶), Lai Pei-Tao (黎沛涛), Yao Ruo-He (姚若河). Chin. Phys. B, 2014, 23(6): 068501.
[9] High efficiency grating couplers based on shared process with CMOS MOSFETs
Qiu Chao (仇超), Sheng Zhen (盛振), Li Le (李乐), Albert Pang (彭树根), Wu Ai-Min (武爱民), Wang Xi (王曦), Zou Shi-Chang (邹世昌), Gan Fu-Wan (甘甫烷). Chin. Phys. B, 2013, 22(2): 024212.
[10] The mechanism of hydrogen plasma passivation for poly-crystalline silicon thin film
Li Juan (李娟), Luo Chong (罗翀), Meng Zhi-Guo (孟志国), Xiong Shao-Zhen (熊绍珍), Hoi Sing Kwok (郭海威). Chin. Phys. B, 2013, 22(10): 105101.
[11] The influence of SiNx substrate on crystallinity of μc-Si film used in thin film transistors
Li Juan (李娟), Wu Chun-Ya (吴春亚), Liu Jian-Ping (刘建平), Zhao Shu-Yun (赵淑芸), Meng Zhi-Guo (孟志国), Xiong Shao-Zhen (熊绍珍), Zhang Li-Zhu (张丽珠). Chin. Phys. B, 2006, 15(6): 1330-1334.
[12] Novel vertical stack HCMOSFET with strained SiGe/Si quantum channel
Jiang Tao (姜涛), Zhang He-Ming (张鹤鸣), Wang Wei (王伟), Hu Hui-Yong (胡辉勇), Dai Xian-Ying (戴显英). Chin. Phys. B, 2006, 15(6): 1339-1345.
No Suggested Reading articles found!