Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(11): 4949-4954    DOI: 10.1088/1674-1056/18/11/055
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Reverse Monte Carlo study on structural order in liquid and glassy AlFe alloys

Zhang Jing-Xiang(张景祥)a)b)†,Li Hui(李辉) a),Zhang Jie(张洁)a), Song Xi-Gui(宋西贵)a), and Bian Xiu-Fang(边秀房) a)
a Key Lab of Liquid Structure and Heredity of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, China; b School of Information Science and Engineering, University of Jinan, Jinan 250022, China
Abstract  This paper reports that anomalous local order in liquid and glassy AlFeCe alloy has been detected by x-ray diffraction measurements. The addition of the element Ce has a great effect on this local structural order. The element Ce favours interpenetration of the icosahedra by sharing a common face and edges. It argues that frustration between this short-range order and the long-range crystalline order controls the glass-forming ability of these liquids. The obtained results suggest that a system having a stronger tendency to show local icosahedral order should be a better glass-former. This scenario also naturally explains the close relationship between the local icosahedral order in a liquid, glass-forming ability, and the nucleation barrier. Such topological local order has also been analysed directly using the reverse Monte Carlo method. It also estimated the fraction of local ordered and disordered structural units in a glassy AlFeCe alloy.
Keywords:  reverse Monte Carlo      x-ray diffraction (XRD)      liquid metal      metallic glass  
Received:  15 December 2008      Revised:  06 March 2009      Accepted manuscript online: 
PACS:  61.25.Mv (Liquid metals and alloys)  
  61.43.Dq (Amorphous semiconductors, metals, and alloys)  
  64.70.P- (Glass transitions of specific systems)  
  61.43.Bn (Structural modeling: serial-addition models, computer simulation)  
  61.20.Ja (Computer simulation of liquid structure)  
Fund: Project supported partially by the National Natural Science Foundation of China (Grant Nos 50831003 and 50871062), New Century Excellent Talent Program of Ministry of Education of China (Grant No NCET-05-0599), the National Basic Research Program of China (Grant No 2007CB613901), the National Science Foundation for Distinguished Young Scholars of China (Grant No 50625101), the Scientific Research Foundation for Returned Overseas Chinese Scholars, Ministry of Education of China (Grant No JIAO WAI SI LIU2007--1108) and the National Science Foundation for Distinguished Young Scholars of Shandong Province, China (Grant No JQ200817).

Cite this article: 

Zhang Jing-Xiang(张景祥),Li Hui(李辉),Zhang Jie(张洁), Song Xi-Gui(宋西贵), and Bian Xiu-Fang(边秀房) Reverse Monte Carlo study on structural order in liquid and glassy AlFe alloys 2009 Chin. Phys. B 18 4949

[1] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[2] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[3] Non-monotonic temperature evolution of nonlocal structure-dynamics correlation in CuZr glass-forming liquids
W J Jiang(江文杰) and M Z Li(李茂枝). Chin. Phys. B, 2021, 30(7): 076102.
[4] Hydrogen-induced dynamic slowdown of metallic glass-forming liquids
Jin-Ai Gao(高津爱), Hai-Shen Huang(黄海深), and Yong-Jun Lü(吕勇军). Chin. Phys. B, 2021, 30(6): 066301.
[5] Crystallization evolution and relaxation behavior of high entropy bulk metallic glasses using microalloying process
Danhong Li(李丹虹), Changyong Jiang(江昌勇), Hui Li(栗慧), and Mahander Pandey. Chin. Phys. B, 2021, 30(6): 066401.
[6] Quantitative structure-plasticity relationship in metallic glass: A machine learning study
Yicheng Wu(吴义成), Bin Xu(徐斌), Yitao Sun(孙奕韬), and Pengfei Guan(管鹏飞). Chin. Phys. B, 2021, 30(5): 057103.
[7] Low thermal expansion and broad band photoluminescence of Zr0.1Al1.9Mo2.9V0.1O12
Jun-Ping Wang(王俊平), Qing-Dong Chen(陈庆东), Li-Gang Chen(陈立刚), Yan-Jun Ji(纪延俊), You-Wen Liu(刘友文), and Er-Jun Liang(梁二军). Chin. Phys. B, 2021, 30(3): 036501.
[8] Internal friction behavior of Zr59Fe18Al10Ni10Nb3 metallic glass under different aging temperatures
Israa Faisal Ghazi, Israa Meften Hashim, Aravindhan Surendar, Nalbiy Salikhovich Tuguz, Aseel M. Aljeboree, Ayad F. Alkaim, and Nisith Geetha. Chin. Phys. B, 2021, 30(2): 026401.
[9] Investigations on ion implantation-induced strain in rotated Y-cut LiNbO3 and LiTaO3
Zhongxu Li(李忠旭), Kai Huang(黄凯), Yanda Ji(吉彦达), Yang Chen(陈阳), Xiaomeng Zhao(赵晓蒙), Min Zhou(周民), Tiangui You(游天桂), Shibin Zhang(张师斌), and Xin Ou(欧欣). Chin. Phys. B, 2021, 30(10): 106103.
[10] Role of Ag microalloying on glass forming ability and crystallization kinetics of ZrCoAgAlNi amorphous alloy
A Surendar, K Geetha, C Rajan, and M Alaazim. Chin. Phys. B, 2021, 30(1): 017201.
[11] Thermal effects and evolution of the defect concentration based on shear modulus relaxation data in a Zr-based metallic glass
Qi Hao(郝奇), Ji-Chao Qiao(乔吉超), E V Goncharova, G V Afonin, Min-Na Liu(刘敏娜), Yi-Ting Cheng(程怡婷), V A Khonik. Chin. Phys. B, 2020, 29(8): 086402.
[12] Balancing strength and plasticity of dual-phase amorphous/crystalline nanostructured Mg alloys
Jia-Yi Wang(王佳怡), Hai-Yang Song(宋海洋), Min-Rong An(安敏荣), Qiong Deng(邓琼), Yu-Long Li(李玉龙). Chin. Phys. B, 2020, 29(6): 066201.
[13] Effect of Sn and Al additions on the microstructure and mechanical properties of amorphous Ti-Cu-Zr-Ni alloys
Fu-Chuan Chen(陈福川), Fu-Ping Dai(代富平), Xiao-Yi Yang(杨霄熠), Ying Ruan(阮莹), Bing-Bo Wei(魏炳波). Chin. Phys. B, 2020, 29(6): 066401.
[14] Magnetoacoustic position imaging for liquid metal in animal interstitial structure
Xiao-He Zhao(赵筱赫), Guo-Qiang Liu(刘国强), Hui Xia(夏慧), Yan-Hong Li(李艳红). Chin. Phys. B, 2020, 29(5): 054305.
[15] Nearly golden-ratio order in Ta metallic glass
Yuan-Qi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2020, 29(4): 046105.
No Suggested Reading articles found!