Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(10): 4479-4485    DOI: 10.1088/1674-1056/18/10/063
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Tunneling conductance in quantum wire/insulator/dx2 -y2 + idxy mixed wave superconductor junctions

Wei Jian-Wen(魏健文)
Department of Physics, Huaiyin Normal University, Huaian 223001, China
Abstract  Using the extended Blonder--Tinkham--Klapwijk (BTK) theory, this paper calculates the tunnelling conductance in quantum wire/insulator/dx2 -y2 + idxy mixed wave superconductor ( q / I /dx2 -y2 + idxy) junctions. That is different from the case in d- and p-wave superconductor junctions. When the angle $\alpha$  between a-axis of the dx2 -ywave superconductor and the interface normal is $\pi$ /4, there follows a rather distinctive tunnelling conductance. The zero-bias conductance peak (ZBCP) may or may not appear in the tunnelling conductance. Both the interface potential z and the quasi-particle lifetime factor $\varGamma$ are smaller, there is no ZBCP. Otherwise, the ZBCP will appear. The position of bias conductance peak (BCP) depends strongly on the amplitude ratio of two components for dx2 -y2 + idxy mixed wave. The low and narrow ZBCP may coexist with the BCP in the tunnelling conductance. Using those features in the tunnelling conductance of q / I /dx2 -y2 + idxy junctions, it can distinguish dx2 -y2 + idxy mixed wave superconductor from d- and p-wave one.
Keywords:  quantum wire      dx2 -y2 + idxy mixed wave superconductor      tunneling conductance      quasi-particle lifetime  
Received:  03 February 2009      Revised:  20 March 2009      Accepted manuscript online: 
PACS:  74.50.+r (Tunneling phenomena; Josephson effects)  
  74.20.-z (Theories and models of superconducting state)  
  74.25.Fy  

Cite this article: 

Wei Jian-Wen(魏健文) Tunneling conductance in quantum wire/insulator/dx2 -y2 + idxy mixed wave superconductor junctions 2009 Chin. Phys. B 18 4479

[1] Delta-doped quantum wire tunnel junction for highly concentrated solar cells
Ali Bahrami, Mahyar Dehdast, Shahram Mohammadnejad, Habib Badri Ghavifekr. Chin. Phys. B, 2019, 28(4): 046102.
[2] Spin texturing in quantum wires with Rashba and Dresselhaus spin-orbit interactions and in-plane magnetic field
B Gisi, S Sakiroglu, İ Sokmen. Chin. Phys. B, 2016, 25(1): 017103.
[3] Spin texturing in a parabolically confined quantum wire with Rashba and Dresselhaus spin–orbit interactions
S. Saríkurt, S. Şakiroğlu, K. Akgüngör, İ. Sökmen. Chin. Phys. B, 2014, 23(1): 017102.
[4] Mobility limited by cluster scattering in ternary alloy quantum wires
Zhang Heng (张恒), Yang Shao-Yan (杨少延), Liu Gui-Peng (刘贵鹏), Wang Jian-Xia (王建霞), Jin Dong-Dong (金东东), Li Hui-Jie (李辉杰), Liu Xiang-Lin (刘祥林), Zhu Qin-Sheng (朱勤生), Wang Zhan-Guo (王占国). Chin. Phys. B, 2014, 23(1): 017305.
[5] Thermal conductance in a two-slit quantum waveguide
Nie Liu-Ying(聂六英), Li Chun-Xian(李春先), Zhou Xiao-Ping(周晓萍), Wang Cheng-Zhi(王成志), and Cheng Fang(程芳) . Chin. Phys. B, 2012, 21(2): 026301.
[6] Dynamic electron transport theory for multiprobe mesoscopic structures
Quan Jun(全军), Tian Ying (田英), Zhang Jun(张军), and Shao Le-Xi(邵乐喜) . Chin. Phys. B, 2011, 20(7): 077201.
[7] Spin current and its heat effect in a multichannel quantum wire with Rashba spin–orbit coupling
Song Zhan-Feng(宋占锋), Wang Ya-Dong(王亚东), Shao Hui-Bin(邵慧彬), and Sun Zhi-Gang(孙志刚). Chin. Phys. B, 2011, 20(7): 077302.
[8] Band structure and absorption coefficient in GaN/AlGaN quantum wires
Yao Wen-Jie(姚文杰), Yu Zhong-Yuan(俞重远), and Liu Yu-Min(刘玉敏). Chin. Phys. B, 2010, 19(7): 077101.
[9] Electron transport for a laser-irradiated quantum channel with Rashba spin--orbit coupling
Zhao Hua(赵华), Liao Wen-Hu(廖文虎), and Zhou Guang-Hui(周光辉). Chin. Phys. B, 2007, 16(6): 1748-1752.
[10] Persistent spin current in a quantum wire with weak Dresselhaus spin--orbit coupling
Sheng Wei(盛威), Wang Yi(王羿), and Zhou Guang-Hui(周光辉). Chin. Phys. B, 2007, 16(2): 533-536.
[11] Laser-manipulated the multiphoton transitions of a harmonically trapped particle
Chen Qiong(陈琼), Hai Kuo(海阔), and Hai Wen-Hua(海文华). Chin. Phys. B, 2007, 16(12): 3662-3667.
[12] Polar interface and surface optical vibration spectra in multi-layer wurtzite quantum wires: transfer matrix method
Zhang Li (张立). Chin. Phys. B, 2006, 15(5): 1101-1109.
[13] THz-field-induced electronic transmission step-structure for a quantum wire
Xiao Xian-Bo (肖贤波), Zhou Guang-Hui (周光辉), Yang Mou (杨谋), Li Yuan (李源), Xu Zhi-Feng (徐志峰). Chin. Phys. B, 2004, 13(9): 1531-1536.
[14] Atomic hydrogen induced step bunching and fabrication of quantum wire arrays on GaAs (311)A substrate by molecular beam epitaxy
Zhou Da-Yong (周大勇), Lan Qing (澜清), Kong Yun-Chuan (孔云川), Miao Zhen-Hua (苗振华), Feng Song-Lin (封松林), Niu Zhi-Chuan (牛智川). Chin. Phys. B, 2003, 12(2): 218-221.
[15] VARIATIONAL CALCULATION ON GROUND-STATE ENERGY OF BOUND POLARONS IN PARABOLIC QUANTUM WIRES
Wang Zhuang-bing (汪壮兵), Wu Fu-li (吴福理), Chen Qing-hu (陈庆虎), Jiao Zheng-kuan (焦正宽). Chin. Phys. B, 2001, 10(5): 437-442.
No Suggested Reading articles found!