Please wait a minute...
Chinese Physics, 2001, Vol. 10(5): 437-442    DOI: 10.1088/1009-1963/10/5/315
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

VARIATIONAL CALCULATION ON GROUND-STATE ENERGY OF BOUND POLARONS IN PARABOLIC QUANTUM WIRES

Wang Zhuang-bing (汪壮兵), Wu Fu-li (吴福理), Chen Qing-hu (陈庆虎), Jiao Zheng-kuan (焦正宽)
Department of Physics, Zhejiang University, Hangzhou 310027, China
Abstract  Within the framework of Feynman path-integral variational theory, we calculate the ground-state energy of a polaron in parabolic quantum wires in the presence of a Coulomb potential. It is shown that the polaronic correction to the ground-state energy is more sensitive to the electron-phonon coupling constant than the Coulomb binding parameter, and it increases monotonically with decreasing effective wire radius. Moreover, compared to the results obtained by Feynman Haken variational path-integral theory, we obtain better results within the Feynman path-integral variational approach (FV approach). Applying our calculation to several polar semiconductor quantum wires, we find that the polaronic correction can be considerably large.
Keywords:  polaron      path integral      quantum wire  
Received:  08 October 2000      Revised:  14 January 2001      Accepted manuscript online: 
PACS:  71.38.-k (Polarons and electron-phonon interactions)  
  73.21.Hb (Quantum wires)  
  02.30.Xx (Calculus of variations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 19804009).

Cite this article: 

Wang Zhuang-bing (汪壮兵), Wu Fu-li (吴福理), Chen Qing-hu (陈庆虎), Jiao Zheng-kuan (焦正宽) VARIATIONAL CALCULATION ON GROUND-STATE ENERGY OF BOUND POLARONS IN PARABOLIC QUANTUM WIRES 2001 Chinese Physics 10 437

[1] Charge self-trapping in two strand biomolecules: Adiabatic polaron approach
D Chevizovich, S Zdravković, A V Chizhov, and Z Ivić. Chin. Phys. B, 2023, 32(1): 010506.
[2] Non-universal Fermi polaron in quasi two-dimensional quantum gases
Yue-Ran Shi(石悦然), Jin-Ge Chen(陈金鸽), Kui-Yi Gao(高奎意), and Wei Zhang(张威). Chin. Phys. B, 2022, 31(8): 080305.
[3] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[4] Probability density and oscillating period of magnetopolaron in parabolic quantum dot in the presence of Rashba effect and temperature
Ying-Jie Chen(陈英杰) and Feng-Lan Shao(邵凤兰). Chin. Phys. B, 2021, 30(11): 110304.
[5] Polaron and molecular states of a spin-orbit coupled impurity in a spinless Fermi sea
Hong-Hao Yin(尹洪浩), Tian-Yang Xie(谢天扬), An-Chun Ji(纪安春), and Qing Sun(孙青). Chin. Phys. B, 2021, 30(10): 106702.
[6] Defect induced room-temperature ferromagnetism and enhanced photocatalytic activity in Ni-doped ZnO synthesized by electrodeposition
Deepika, Raju Kumar, Ritesh Kumar, Kamdeo Prasad Yadav, Pratyush Vaibhav, Seema Sharma, Rakesh Kumar Singh, and Santosh Kumar†. Chin. Phys. B, 2020, 29(10): 108503.
[7] Delta-doped quantum wire tunnel junction for highly concentrated solar cells
Ali Bahrami, Mahyar Dehdast, Shahram Mohammadnejad, Habib Badri Ghavifekr. Chin. Phys. B, 2019, 28(4): 046102.
[8] Second-order interference of two independent photons with different spectra
Yu Zhou(周宇), Jian-Bin Liu(刘建彬), Huai-Bin Zheng(郑淮斌), Hui Chen(陈辉), Fu-Li Li(李福利), Zhuo Xu(徐卓). Chin. Phys. B, 2019, 28(10): 104205.
[9] Magnetpolaron effect in two-dimensional anisotropic parabolic quantum dot in a perpendicular magnetic field
Kang-Kang Ju(居康康), CuiXian Guo(郭翠仙), Xiao-Yin Pan(潘孝胤). Chin. Phys. B, 2017, 26(9): 097103.
[10] Polaron effects in cylindrical GaAs/AlxGa1-xAs core-shell nanowires
Hui Sun(孙慧), Bing-Can Liu(刘炳灿), Qiang Tian(田强). Chin. Phys. B, 2017, 26(9): 097302.
[11] Temperature and hydrogen-like impurity effects on the excited state of the strong coupling bound polaron in a CsI quantum pseudodot
Jing-Lin Xiao(肖景林). Chin. Phys. B, 2017, 26(2): 027104.
[12] Second-order temporal interference of two independent light beams at an asymmetrical beam splitter
Jianbin Liu(刘建彬), Jingjing Wang(王婧婧), Zhuo Xu(徐卓). Chin. Phys. B, 2017, 26(1): 014201.
[13] Effect of a force-free end on the mechanical property of a biopolymer–A path integral approach
Zicong Zhou(周子聪), Béla Joós. Chin. Phys. B, 2016, 25(8): 088701.
[14] Properties of strong-coupling magneto-bipolaron qubit in quantum dot under magnetic field
Xu-Fang Bai(白旭芳), Ying Zhang(张颖), Wuyunqimuge(乌云其木格), Eerdunchaolu(额尔敦朝鲁). Chin. Phys. B, 2016, 25(7): 077804.
[15] Path integral approach to electron scattering in classical electromagnetic potential
Chuang Xu(许闯), Feng Feng(冯锋), Ying-Jun Li(李英骏). Chin. Phys. B, 2016, 25(5): 050303.
No Suggested Reading articles found!