Abstract Boundary conditions (BCs) play an essential role in lattice Boltzmann (LB) simulations. This paper investigates several most commonly applied BCs by evaluating the relative L2-norm errors of the LB simulations for two-dimensional (2-D) Poiseuille flow. It is found that the relative L2-norm error resulting from FHML's BC is smaller than that from other BCs as a whole. Then, based on the FHML's BC, it formulates an LB model for simulating fluid flows in 2-D channel with complex geometries. Afterwards, the flows between two inclined plates, in a pulmonary blood vessel and in a blood vessel with local expansion region, are simulated. The numerical results are in good agreement with the analytical predictions and clearly show that the model is effective. It is expected that the model can be extended to simulate some real biologic flows, such as blood flows in arteries, vessels with stenosises, aneurysms and bifurcations, etc.
Received: 02 December 2008
Revised: 12 March 2009
Accepted manuscript online:
Fund: Project supported by the National
Natural Science Foundation of China (Grant No 10765002), and Guangxi
Natural Science Foundation
(Grant No 0542045).
Cite this article:
Wen Bing-Hai(闻炳海), Liu Hai-Yan(刘海燕), Zhang Chao-Ying(张超英), and Wang Qiang(王强) Lattice Boltzmann simulation of fluid flows in two-dimensional channel with complex geometries 2009 Chin. Phys. B 18 4353
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.