Theoretical investigation on near-infrared and visible absorption spectra of nanometallic aluminium with oxide coating in nanoenergetic materials: size and shape effects
Peng Ya-Jing(彭亚晶), Zhang Shu-Ping(张淑平), Wang Ying-Hui(王英惠), and Yang Yan-Qiang(杨延强)†
Center for Condensed Matter Science and Technology, Department of Physics, Harbin Institute of Technology, Harbin 150001, China
Abstract The effects of metal core dimension, oxide shell thickness and ellipsoid aspect ratio of Al--Al$_{2}$O$_{3}$ core-shell nanoparticles on the near-infrared and visible absorption spectra of nanocomposite Al--Al$_{2}$O$_{3}$/nitrocellulose(NC) film are investigated by numerical calculations. Both the size-dependent interband transitions and frequency-dependent free electron damping of the nanometallic aluminium are taken into account in the calculations. Oxidation effect of nanoaluminium is also analysed. It is shown that oxidation may enhance but may also reduce the optical absorption, depending on the excited light energy and initial dimension of nanoparticle. Metal core size and excited light energy dominate the absorption characteristic. The absorption ability of ellipsoidal nanoparticles is larger than that of spheroidal nanoparticles and increases by the square index as the aspect ratio increases. These calculations will provide some significant theoretical guidance for the preparation and laser ignition of nanoenergetic materials.
Received: 17 March 2008
Revised: 17 April 2008
Accepted manuscript online:
(Absorption and reflection spectra: visible and ultraviolet)
Fund: Project supported by
the National Natural Science Foundation of
China (Grant No 20573028).
Cite this article:
Peng Ya-Jing(彭亚晶), Zhang Shu-Ping(张淑平), Wang Ying-Hui(王英惠), and Yang Yan-Qiang(杨延强) Theoretical investigation on near-infrared and visible absorption spectra of nanometallic aluminium with oxide coating in nanoenergetic materials: size and shape effects 2008 Chin. Phys. B 17 3505
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.