Please wait a minute...
Chin. Phys. B, 2008, Vol. 17(6): 2297-2303    DOI: 10.1088/1674-1056/17/6/061
CROSS DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

The synchronization of FitzHugh--Nagumo neuron network coupled by gap junction

Zhan Yong(展永), Zhang Su-Hua(张素花), Zhao Tong-Jun(赵同军), An Hai-Long(安海龙), Zhang Zhen-Dong(张振东), Han Ying-Rong(韩英荣), Liu Hui(柳辉), and Zhang Yu-Hong(张玉红)
School of Sciences, Hebei University of Technology, Tianjin 300130, China
Abstract  It is well known that the strong coupling can synchronize a network of nonlinear oscillators. Synchronization provides the basis of the remarkable computational performance of the brain. In this paper the FitzHugh--Nagumo neuron network is constructed. The dependence of the synchronization on the coupling strength, the noise intensity and the size of the neuron network has been discussed. The results indicate that the coupling among neurons works to improve the synchronization, and noise increases the neuron random dynamics and the local fluctuations; the larger the size of network, the worse the synchronization. The dependence of the synchronization on the strength of the electric synapse coupling and chemical synapse coupling has also been discussed, which proves that electric synapse coupling can enhance the synchronization of the neuron network largely.
Keywords:  synchronization      gap junction      FitzHugh--Nagumo model  
Received:  23 August 2006      Revised:  08 January 2008      Accepted manuscript online: 
PACS:  87.18.Sn (Neural networks and synaptic communication)  
  87.10.-e (General theory and mathematical aspects)  
  87.19.L- (Neuroscience)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos 10645006 and 10747123) and the Natural Science Foundation of Hebei Province (Grant Nos C2005000011and C2007000026) and the Key Subject Construction Project of Hebei Provincia

Cite this article: 

Zhan Yong(展永), Zhang Su-Hua(张素花), Zhao Tong-Jun(赵同军), An Hai-Long(安海龙), Zhang Zhen-Dong(张振东), Han Ying-Rong(韩英荣), Liu Hui(柳辉), and Zhang Yu-Hong(张玉红) The synchronization of FitzHugh--Nagumo neuron network coupled by gap junction 2008 Chin. Phys. B 17 2297

[1] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[2] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[3] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[4] Power-law statistics of synchronous transition in inhibitory neuronal networks
Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军). Chin. Phys. B, 2022, 31(8): 080505.
[5] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[6] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[7] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[8] Synchronization in multilayer networks through different coupling mechanisms
Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Chin. Phys. B, 2022, 31(4): 048901.
[9] Collective behavior of cortico-thalamic circuits: Logic gates as the thalamus and a dynamical neuronal network as the cortex
Alireza Bahramian, Sajjad Shaukat Jamal, Fatemeh Parastesh, Kartikeyan Rajagopal, and Sajad Jafari. Chin. Phys. B, 2022, 31(2): 028901.
[10] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[11] Measure synchronization in hybrid quantum-classical systems
Haibo Qiu(邱海波), Yuanjie Dong(董远杰), Huangli Zhang(张黄莉), and Jing Tian(田静). Chin. Phys. B, 2022, 31(12): 120503.
[12] Finite-time complex projective synchronization of fractional-order complex-valued uncertain multi-link network and its image encryption application
Yong-Bing Hu(胡永兵), Xiao-Min Yang(杨晓敏), Da-Wei Ding(丁大为), and Zong-Li Yang(杨宗立). Chin. Phys. B, 2022, 31(11): 110501.
[13] Finite-time Mittag—Leffler synchronization of fractional-order complex-valued memristive neural networks with time delay
Guan Wang(王冠), Zhixia Ding(丁芝侠), Sai Li(李赛), Le Yang(杨乐), and Rui Jiao(焦睿). Chin. Phys. B, 2022, 31(10): 100201.
[14] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[15] Explosive synchronization in a mobile network in the presence of a positive feedback mechanism
Dong-Jie Qian(钱冬杰). Chin. Phys. B, 2022, 31(1): 010503.
No Suggested Reading articles found!