Abstract In this paper the temperature-related performances of the Yb3+:YAG disc laser has been investigated based on quasi-three level rate equation model. A compact diamond window cooling scheme also has been demonstrated. In this cooling scheme, laser disc is placed between two thin discs of single crystal synthetic diamond, the heat transfer from Yb3+:YAG to the diamond, in the direction of the optical axis, and then rapidly conducted radically outward through the diamond to the cooling water at the circumference of the diamond/Yb3+:YAG assembly. Simulation results show that increasing the thickness of the diamond and the overlap-length (between diamond and water) decreases the disc temperature. Therefore a 0.3--0.5mm thick diamond window with the overlap-length of 1.5--2.0mm will provide acceptable cost effective cooling, e.g., with a pump intensity of 15kW/cm2 and repetitive rate of 10Hz, to keep the maximum temperature of the lasing disc below a reasonable value (310K), the heat exchange coefficient of water should be about 3000 W/m2K.
Received: 03 March 2006
Revised: 28 May 2006
Accepted manuscript online:
(Resonators, cavities, amplifiers, arrays, and rings)
Cite this article:
Cao Ding-Xiang(曹丁象), Yu Hai-Wu(於海武), Zheng Wan-Guo(郑万国), He Shao-Bo(贺少勃), and Wang Xiao-Feng(王晓峰) Temperature-related performance of Yb3+:YAG disk lasers and optimum design for diamond cooling 2006 Chinese Physics 15 2963
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.