Abstract In this paper a comprehensive framework for treating the nonlinear propagation of ultrashort pulse in metamaterial with dispersive dielectric susceptibility and magnetic permeability is presented. Under the slowly-evolving-wave approximation, a generalized (3+1)-dimensional wave equation first order in the propagation coordinate and suitable for both right-handed material (RHM) and left-handed material (LHM) is derived. By the commonly used Drude dispersive model for LHM, a (3+1)-dimensional nonlinear Schr?dinger equation describing ultrashort pulsed beam propagation in LHM is obtained, and its difference from that for conventional RHM is discussed. Particularly, the self-steeping effect of ultrashort pulse is found to be anomalous in LHM.
Received: 23 March 2006
Revised: 24 May 2006
Accepted manuscript online:
PACS:
42.70.Nq
(Other nonlinear optical materials; photorefractive and semiconductor materials)
(Ultrafast processes; optical pulse generation and pulse compression)
Fund: Supported by the National Natural Science Foundation of China (Grant Nos 10576012 and 60538010), the Program for New Century Excellent Talents in University and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No
Cite this article:
Hu Yong-Hua(胡勇华), Fu Xi-Quan(傅喜泉), Wen Shuang-Chun(文双春), Su Wen-Hua(苏文华), and Fan Dian-Yuan(范滇元) (3+1)-dimensional nonlinear propagation equation for ultrashort pulsed beam in left-handed material 2006 Chinese Physics 15 2970
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.