Abstract In this paper, we propose a scheme for transferring an unknown atomic entangled state via cavity quantum electrodynamics (QED). This scheme, which has a successful probability of 100 percent, does not require Bell-state measurement and performing any operations to reconstruct an initial state. Meanwhile, the scheme only involves atom--field interaction with a large detuning and does not require the transfer of quantum information between the atoms and cavity. Thus the scheme is insensitive to the cavity field states and cavity decay. This scheme can also be extended to transfer ring an entangled state of $n$-atom.
Received: 03 January 2006
Revised: 11 June 2006
Accepted manuscript online:
Fund: Project supported by the National Natural Science Foundation of China (Grant No 10574001), the Program of the Education Department of Anhui Province, China (Grant No 2004kj029), and the Program of Fuyang Teachers College, China (Grant No 2005LQ04).
Cite this article:
Wu Tao(吴韬), Ye Liu(叶柳), and Ni Zhi-Xiang(倪致祥) A scheme for transferring an unknown atomic entangledstate via cavity quantum electrodynamics 2006 Chinese Physics 15 2506
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.