Please wait a minute...
Chinese Physics, 2005, Vol. 14(12): 2444-2450    DOI: 10.1088/1009-1963/14/12/013
NUCLEAR PHYSICS Prev   Next  

Investigation on the deformation of Ne and Mg isotope chains within relativistic mean-field model

Chen Jin-Gen (陈金根)abc, Cai Xiang-Zhou (蔡翔舟)a, Wang Ting-Tai (王庭太)d, Ma Yu-Gang (马余刚)a, Ren Zhong-Zhou (任中洲)e, Fang De-Qing (方德清)a, Zhong Chen (钟晨)a, Wei Yi-Bin (魏义彬)ac, Guo Wei (郭威)ac, Zhou Xing-Fei (周星飞)acf, Wang Kun (王鲲)ac, Ma Guo-Liang (马国亮)ac, Tian Wen-Dong (田文栋)a, Chen Jin-Hui (陈金辉)ac, Yan Ting-Zhi (颜廷志)ac, Zuo Jia-Xu (左嘉旭)ac, Ma Chun-Wang (马春旺)ac, Shen Wen-Qing (沈文庆)a
a Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; b College of Science, Zhejiang Forestry University, Hangzhou 311300, China; c Graduate School of the Chinese Academy of Sciences, Beijing 100039, China; d Department of Mathematics and Physics,Zhongyuan Institute of Technology, 450007, Chinae Department of Physics, Nanjing University, Nanjing 210008, Chinaf College of Sciences, Ningbo University, Ningbo 315211, China
Abstract  Ne and Mg isotope chains are investigated based on constrained calculations in the framework of a deformed relativistic mean-field (RMF) model with the NL075 parameter set. The calculated quadrupole deformation and binding energy are compared with other theoretical results as well as the available experimental data. It shows that the calculated deformations of Ne and Mg with the NL075 are more accurate than those obtained with the NL-SH. It is predicted that $^{19,29,32}$Ne and $^{20,31}$Mg maybe have a triaxial deformation and $^{25-28}$Ne and $^{27-30}$Mg exhibit a shape coexistence probably. The closure effect of neutron number = 8 for $^{20}$Mg is predicted to be very weak.
Keywords:  deformation      shape coexistence      binding energy      RMF model      constraint calculation  
Received:  26 January 2005      Revised:  20 June 2005      Accepted manuscript online: 
PACS:  21.60.Jz (Nuclear Density Functional Theory and extensions (includes Hartree-Fock and random-phase approximations))  
  21.10.Dr (Binding energies and masses)  
  27.30.+t (20 ≤ A ≤ 38)  
  27.20.+n (6 ≤ A ≤ 19)  
Fund: Project supported by the Major State Basic Research Development Program of China (Grant No G2000077404), the National Natural Science Foundation of China (Grant Nos 10125521, 10475108, 10405032 and 10328259), the Fund of the Education Ministry of China (Grant No 20010284036) and the Shanghai Phosphor Program (Grant No 03 QA 14066).

Cite this article: 

Chen Jin-Gen (陈金根), Cai Xiang-Zhou (蔡翔舟), Wang Ting-Tai (王庭太), Ma Yu-Gang (马余刚), Ren Zhong-Zhou (任中洲), Fang De-Qing (方德清), Zhong Chen (钟晨), Wei Yi-Bin (魏义彬), Guo Wei (郭威), Zhou Xing-Fei (周星飞), Wang Kun (王鲲), Ma Guo-Liang (马国亮), Tian Wen-Dong (田文栋), Chen Jin-Hui (陈金辉), Yan Ting-Zhi (颜廷志), Zuo Jia-Xu (左嘉旭), Ma Chun-Wang (马春旺), Shen Wen-Qing (沈文庆) Investigation on the deformation of Ne and Mg isotope chains within relativistic mean-field model 2005 Chinese Physics 14 2444

[1] Effect of bio-tissue deformation behavior due to intratumoral injection on magnetic hyperthermia
Yundong Tang(汤云东), Jian Zou(邹建), Rodolfo C.C. Flesch, and Tao Jin(金涛). Chin. Phys. B, 2023, 32(3): 034304.
[2] Molecular dynamics simulation of interaction between nanorod and phospholipid molecules bilayer
Xin Wang(王鑫), Xiang-Qin Li(李香琴), Tian-Qing Liu(刘天庆), Li-Dan Zhao(赵丽丹), Ke-Dong Song(宋克东), and Dan Ge(葛丹). Chin. Phys. B, 2023, 32(1): 016201.
[3] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[4] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[5] Molecular dynamics study of coupled layer thickness and strain rate effect on tensile behaviors of Ti/Ni multilayered nanowires
Meng-Jia Su(宿梦嘉), Qiong Deng(邓琼), Lan-Ting Liu(刘兰亭), Lian-Yang Chen(陈连阳), Meng-Long Su(宿梦龙), and Min-Rong An(安敏荣). Chin. Phys. B, 2021, 30(9): 096201.
[6] Texture analysis of ultra-high coercivity Sm2Co7 hot deformation magnets
Qiang Ma(马强), Meishuang Jia(贾美爽), Zhifeng Hu(胡智峰), Ming Yue(岳明), Yanli Liu(刘艳丽), Tongyun Zhao(赵同云), and Baogen Shen(沈保根). Chin. Phys. B, 2021, 30(4): 047505.
[7] Estimation of biophysical properties of cell exposed to electric field
Hui Zhang(张辉), Liyang Wang(王李阳), Peijie Zhang(张培杰), Xiaodi Zhang(张小娣), and Jun Ma(马军). Chin. Phys. B, 2021, 30(3): 038702.
[8] Effect of deformation of diamond anvil and sample in diamond anvil cell on the thermal conductivity measurement
Caihong Jia(贾彩红), Dawei Jiang(蒋大伟), Min Cao(曹敏), Tingting Ji(冀婷婷), and Chunxiao Gao(高春晓). Chin. Phys. B, 2021, 30(12): 124702.
[9] Design, fabrication, and characterization of Ti/Au transition-edge sensor with different dimensions of suspended beams
Hong-Jun Zhang(张宏俊), Ji Wen(文继), Zhao-Hong Mo(莫钊洪), Hong-Rui Liu(刘鸿瑞), Xiao-Dong Wang(汪小东), Zhong-Hua Xiong(熊忠华), Jin-Wen Zhang(张锦文), and Mao-Bing Shuai(帅茂兵). Chin. Phys. B, 2021, 30(11): 117401.
[10] Numerical research on effect of overlap ratio on thermal-stress behaviors of the high-speed laser cladding coating
Xiaoxi Qiao(乔小溪), Tongling Xia(夏同领), and Ping Chen(陈平). Chin. Phys. B, 2021, 30(1): 018104.
[11] Optical properties of core/shell spherical quantum dots
Shuo Li(李硕), Lei Shi(石磊), Zu-Wei Yan(闫祖威). Chin. Phys. B, 2020, 29(9): 097802.
[12] Lattice deformation in epitaxial Fe3O4 films on MgO substrates studied by polarized Raman spectroscopy
Yang Yang(杨洋), Qiang Zhang(张强), Wenbo Mi(米文博), Xixiang Zhang(张西祥). Chin. Phys. B, 2020, 29(8): 083302.
[13] Anisotropic plasticity of nanocrystalline Ti: A molecular dynamics simulation
Minrong An(安敏荣), Mengjia Su(宿梦嘉), Qiong Deng(邓琼), Haiyang Song(宋海洋), Chen Wang(王晨), Yu Shang(尚玉). Chin. Phys. B, 2020, 29(4): 046201.
[14] Electrohydrodynamic behaviors of droplet under a uniform direct current electric field
Zi-Long Deng(邓梓龙), Mei-Mei Sun(孙美美), Cheng Yu(于程). Chin. Phys. B, 2020, 29(3): 034703.
[15] Plastic deformation mechanism transition of Ti/Ni nanolaminate with pre-existing crack: Molecular dynamics study
Meng-Jia Su(宿梦嘉), Qiong Deng(邓琼)†, Min-Rong An(安敏荣), and Lan-Ting Liu(刘兰亭). Chin. Phys. B, 2020, 29(11): 116201.
No Suggested Reading articles found!