Abstract By using the full-potential linearized augmented plane wave method to perform ab initio total energy calculations, we have explored magnetic ordering in one-dimensional Zr wires. The result shows that Zr can form linear, or dimerized, or zigzag wires, and the magnetic properties strongly depend on their geometric structures.The linear and zigzag wires exhibit ferromagnetic ground states at the equilibrium bonding distance, while the dimerized wire, despite its higher stability than that of the linear one,exhibits nonmagnetic ground states. The most stable geometry is shown to be the zigzag wire with a magnetic moment of 0.26 $\mu_{\rm B}$ per atom.
Received: 22 March 2005
Revised: 20 June 2005
Accepted manuscript online:
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.