Please wait a minute...
Chinese Physics, 2001, Vol. 10(13): 76-79    DOI:
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

HIGH-YIELD PRODUCTION OF MULTI-WALLED CARBON NANOTUBES BY CATALYTIC DECOMPOSITION OF BENZENE VAPOR

Wang Xi-zhang (王喜章)a, Hu Zheng (胡征)ab, Wu Qiang (吴强)a, Chen Yi (陈懿)a
a Laboratory of Mesoscopic Materials and Chemistry, Department of Chemistry, Nanjing University, Nanjing 210093, China; bNational Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
Abstract  Multi-walled carbon nanotubes (CNTs) have been synthesized on $\gamma$-Al2O3 supported unitary, binary or trinity metal (Fe, Co, Ni) catalysts with benzene as carbon source in the range of 600 to 810 ℃. The growth of CNTs was carried out in a fixed bed flow reactor and the quality of carbon deposits was characterized by transmission electron microscopy. The preparation was optimized and the high-yield production of CNTs has been achieved for three mixture catalysts with the yield of high-quality CNTs higher than 200% within 60 min, reaching a maximum of 278% for 1.51 mmol/g Fe-1.51 mmol/g Co/$\gamma$-Al2O3 catalyst. This provides a good alternative for future large scale and low cost production of CNTs for applications.
Keywords:  carbon nanotube      chemical vapor deposition (CVD)      benzene  
Received:  26 February 2001      Accepted manuscript online: 
PACS:  6146  
  8115H  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 59871020), by "973" progran (Grant No. G1999064508) and by Visiting Scholar Foundation of Key Laboratory in University.

Cite this article: 

Wang Xi-zhang (王喜章), Hu Zheng (胡征), Wu Qiang (吴强), Chen Yi (陈懿) HIGH-YIELD PRODUCTION OF MULTI-WALLED CARBON NANOTUBES BY CATALYTIC DECOMPOSITION OF BENZENE VAPOR 2001 Chinese Physics 10 76

[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[3] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[4] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 088105.
[5] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[6] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[7] A review of arc-discharge method towards large-scale preparation of long linear carbon chains
Yi-Fan Zhang(张一帆). Chin. Phys. B, 2022, 31(12): 125201.
[8] Large-scale synthesis of polyynes with commercial laser marking technology
Liang Fang(房良), Yanping Xie(解燕平), Shujie Sun(孙书杰), and Wei Zi(訾威). Chin. Phys. B, 2022, 31(12): 126803.
[9] Low-voltage soft robots based on carbon nanotube/polymer electrothermal composites
Qi Wang(王琪), Ying-Qiong Yong(雍颖琼), and Zhi-Ming Bai(白智明). Chin. Phys. B, 2022, 31(12): 128801.
[10] Raman spectroscopy of isolated carbyne chains confined in carbon nanotubes: Progress and prospects
Johannes M. A. Lechner, Pablo Hernández López, and Sebastian Heeg. Chin. Phys. B, 2022, 31(12): 127801.
[11] Adsorption and rotational barrier for a single azobenzene molecule on Au(111) surface
Dong Hao(郝东), Xiangqian Tang(唐向前), Wenyu Wang(王文宇), Yang An(安旸), Yueyi Wang(王悦毅), Xinyan Shan(单欣岩), and Xinghua Lu(陆兴华). Chin. Phys. B, 2021, 30(9): 096805.
[12] Highly flexible and excellent performance continuous carbon nanotube fibrous thermoelectric modules for diversified applications
Xiao-Gang Xia(夏晓刚), Qiang Zhang(张强), Wen-Bin Zhou(周文斌), Zhuo-Jian Xiao(肖卓建), Wei Xi(席薇), Yan-Chun Wang(王艳春), and Wei-Ya Zhou(周维亚). Chin. Phys. B, 2021, 30(7): 078801.
[13] Instability of single-walled carbon nanotubes conveying Jeffrey fluid
Bei-Nan Jia(贾北楠) and Yong-Jun Jian(菅永军). Chin. Phys. B, 2021, 30(4): 044601.
[14] Synthesis of flower-like WS2 by chemical vapor deposition
Jin-Zi Ding(丁金姿), Wei Ren(任卫), Ai-Ling Feng(冯爱玲), Yao Wang(王垚), Hao-Sen Qiao(乔浩森), Yu-Xin Jia(贾煜欣), Shuang-Xiong Ma(马双雄), and Bo-Yu Zhang(张博宇). Chin. Phys. B, 2021, 30(12): 126201.
[15] Carbon nanotube-based nanoelectromechanical resonatoras mass biosensor
Ahmed M. Elseddawy, Adel H. Phillips, Ahmed S Bayoumi. Chin. Phys. B, 2020, 29(7): 078501.
No Suggested Reading articles found!