Adsorption and rotational barrier for a single azobenzene molecule on Au(111) surface
Dong Hao(郝东)1,2, Xiangqian Tang(唐向前)1,2, Wenyu Wang(王文宇)1,2, Yang An(安旸)1,2, Yueyi Wang(王悦毅)2, Xinyan Shan(单欣岩)1,†, and Xinghua Lu(陆兴华)1,2,3,4,‡
1 Beijing National Laboratory for Condensed-Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China; 3 Songshan Lake Laboratory for Materials Science, Dongguan 523808, China; 4 Center for Excellence in Topological Quantum Computation, Beijing 100190, China
Abstract The orientation switching of a single azobenzene molecule on Au(111) surface excited by tunneling electrons and/or photons has been demonstrated in recent experiments. Here we investigate the rotation behavior of this molecular rotor by first-principles density functional theory (DFT) calculation. The anchor phenyl ring prefers adsorption on top of the fcc hollow site, simulated by a benzene molecule on close packed atomic surface. The adsorption energy for an azobenzene molecule on Au(111) surface is calculated to be about 1.76 eV. The rotational energy profile has been mapped with one of the phenyl rings pivots around the fcc hollow site, illustrating a potential barrier about 50 meV. The results are consistent with experimental observations and valuable for exploring a broad spectrum of molecules on this noble metal surface.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 21961142021, 11774395, 91753136, and 11727902), the Beijing Natural Science Foundation, China (Grant No. 4181003), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant Nos. XDB30201000 and XDB28000000).
Corresponding Authors:
Xinyan Shan, Xinghua Lu
E-mail: xinyanshan@iphy.ac.cn;xhlu@aphy.iphy.ac.cn
Cite this article:
Dong Hao(郝东), Xiangqian Tang(唐向前), Wenyu Wang(王文宇), Yang An(安旸), Yueyi Wang(王悦毅), Xinyan Shan(单欣岩), and Xinghua Lu(陆兴华) Adsorption and rotational barrier for a single azobenzene molecule on Au(111) surface 2021 Chin. Phys. B 30 096805
[1] Ishii Y and Yanagida T 2002 in Molecular Motors (Schliwa M, Ed.) (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA) p. 305 [2] Michl J and Sykes E C H 2009 ACS Nano3 1042 [3] Pathem B K, Claridge S A, Zheng Y B and Weiss P S 2013 Annu. Rev. Phys. Chem.64 605 [4] Kassem S, van Leeuwen T, Lubbe A S, Wilson M R, Feringa B L and Leigh D A 2017 Chem. Soc. Rev.46 2592 [5] Aprahamian I 2020 ACS Cent. Sci.6 347 [6] Baroncini M, Silvi S and Credi A 2020 Chem. Rev.120 200 [7] Dattler D, Fuks G, Heiser J, Moulin E, Perrot A, Yao X and Giuseppone N 2020 Chem. Rev.120 310 [8] Comstock M J, Cho J, Kirakosian A and Crommie M F 2005 Phys. Rev. B72 153414 [9] Tanaka H, Ikeda T, Takeuchi M, Sada K, Shinkai S and Kawai T 2011 ACS Nano5 9575 [10] Yan S C, Ding Z J, Xie N, Gong H Q, Sun Q, Guo Y, Shan X Y, Meng S and Lu X H 2012 ACS Nano6 4132 [11] Gehrig J C, Penedo M, Parschau M, Schwenk J, Marioni M A, Hudson E W and Hug H J 2017 Nat. Commun.8 14404 [12] Barth J V, Brune H, Ertl G and Behm R J 1990 Phys. Rev. B42 9307 [13] Fujita D, Amemiya K, Yakabe T, Nejoh H, Sato T and Iwatsuki M 1999 Surf. Sci.423 160 [14] Goyhenex C and Bulou H 2001 Phys. Rev. B63 235404 [15] Bulou H and Goyhenex C 2002 Phys. Rev. B65 045407 [16] Darling S B, Rosenbaum A W, Wang Y and Sibener S J 2002 Langmuir18 7462 [17] Hanke F and Björk J 2013 Phys. Rev. B87 235422 [18] Mette G, Sutter D, Gurdal Y, Schnidrig S, Probst B, Iannuzzi M, Hutter J, Alberto R and Osterwalder J 2016 Nanoscale8 7958 [19] Gurdal Y, Hutter J and Iannuzzi M 2017 J. Phys. Chem. C121 11416 [20] Chen W, Madhavan V, Jamneala T and Crommie M F 1998 Phys. Rev. Lett.80 1469 [21] Yan S C, Xie N, Gong H Q, Sun Q, Guo Y, Shan X Y and Lu X H 2012 Chin. Phys. Lett.29 46803 [22] Weber I, Gerrard N, Hodgson A and Morgenstern K 2019 J. Phys. Chem. C123 6861 [23] Wang J, McEntee M, Tang W, Neurock M, Baddorf A P, Maksymovych P and Yates J T 2016 J. Am. Chem. Soc.138 1518 [24] Iancu V and Hla S-W 2006 Proc. Natl. Acad. Sci. U. S. A.103 13718 [25] Hao D, Tang X Q, An Y, Sun L H, Li J M, Dong A N, Shan X Y and Lu X H 2021 J. Phys. Chem. Lett.12 2011 [26] Giannozzi P, Andreussi O, et al. 2017 J. Phys.: Condens. Matter29 465901 [27] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett.77 3865 [28] Dal Corso A 2014 Comp. Mater. Sci.95 337 [29] Prandini G, Marrazzo A, Castelli I E, Mounet N and Marzari N 2018 npj Comput. Mater.4 72 [30] Monkhorst H J and Pack J D 1976 Phys. Rev. B13 5188 [31] Methfessel M and Paxton A T 1989 Phys. Rev. B40 3616 [32] Grimme S 2006 J. Comput. Chem.27 1787 [33] Reckien W, Eggers M and Bredow T 2014 Beilstein J. Org. Chem.10 1775 [34] Johnston K and Harmandaris V 2011 J. Phys. Chem. C115 14707 [35] Syomin D, Kim J, Koel B E and Ellison G B 2001 J. Phys. Chem. B105 8387 [36] Carrasco J, Liu W, Michaelides A and Tkatchenko A 2014 J. Chem. Phys.140 084704 [37] Hughes Z E, Baev A, Prasad P N and Walsh T R 2017 Phys. Rev. B95 205425 [38] Maurer R J, Ruiz V G, Camarillo-Cisneros J, Liu W, Ferri N, Reuter K and Tkatchenko A 2016 Prog. Surf. Sci.91 72 [39] McNellis E R, Meyer J and Reuter K 2009 Phys. Rev. B80 205414 [40] Kim H W, Han M, Shin H J, Lim S, Oh Y, Tamada K, Hara M, Kim Y, Kawai M and Kuk Y 2011 Phys. Rev. Lett.106 146101
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.