Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 096805    DOI: 10.1088/1674-1056/ac11d9
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Adsorption and rotational barrier for a single azobenzene molecule on Au(111) surface

Dong Hao(郝东)1,2, Xiangqian Tang(唐向前)1,2, Wenyu Wang(王文宇)1,2, Yang An(安旸)1,2, Yueyi Wang(王悦毅)2, Xinyan Shan(单欣岩)1,†, and Xinghua Lu(陆兴华)1,2,3,4,‡
1 Beijing National Laboratory for Condensed-Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
3 Songshan Lake Laboratory for Materials Science, Dongguan 523808, China;
4 Center for Excellence in Topological Quantum Computation, Beijing 100190, China
Abstract  The orientation switching of a single azobenzene molecule on Au(111) surface excited by tunneling electrons and/or photons has been demonstrated in recent experiments. Here we investigate the rotation behavior of this molecular rotor by first-principles density functional theory (DFT) calculation. The anchor phenyl ring prefers adsorption on top of the fcc hollow site, simulated by a benzene molecule on close packed atomic surface. The adsorption energy for an azobenzene molecule on Au(111) surface is calculated to be about 1.76 eV. The rotational energy profile has been mapped with one of the phenyl rings pivots around the fcc hollow site, illustrating a potential barrier about 50 meV. The results are consistent with experimental observations and valuable for exploring a broad spectrum of molecules on this noble metal surface.
Keywords:  Au(111)      molecular rotor      azobenzene  
Received:  16 April 2021      Revised:  07 July 2021      Accepted manuscript online:  07 July 2021
PACS:  68.43.Fg (Adsorbate structure (binding sites, geometry))  
  34.35.+a (Interactions of atoms and molecules with surfaces)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  33.15.Hp (Barrier heights (internal rotation, inversion, rotational isomerism, conformational dynamics))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 21961142021, 11774395, 91753136, and 11727902), the Beijing Natural Science Foundation, China (Grant No. 4181003), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant Nos. XDB30201000 and XDB28000000).
Corresponding Authors:  Xinyan Shan, Xinghua Lu     E-mail:  xinyanshan@iphy.ac.cn;xhlu@aphy.iphy.ac.cn

Cite this article: 

Dong Hao(郝东), Xiangqian Tang(唐向前), Wenyu Wang(王文宇), Yang An(安旸), Yueyi Wang(王悦毅), Xinyan Shan(单欣岩), and Xinghua Lu(陆兴华) Adsorption and rotational barrier for a single azobenzene molecule on Au(111) surface 2021 Chin. Phys. B 30 096805

[1] Ishii Y and Yanagida T 2002 in Molecular Motors (Schliwa M, Ed.) (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA) p. 305
[2] Michl J and Sykes E C H 2009 ACS Nano 3 1042
[3] Pathem B K, Claridge S A, Zheng Y B and Weiss P S 2013 Annu. Rev. Phys. Chem. 64 605
[4] Kassem S, van Leeuwen T, Lubbe A S, Wilson M R, Feringa B L and Leigh D A 2017 Chem. Soc. Rev. 46 2592
[5] Aprahamian I 2020 ACS Cent. Sci. 6 347
[6] Baroncini M, Silvi S and Credi A 2020 Chem. Rev. 120 200
[7] Dattler D, Fuks G, Heiser J, Moulin E, Perrot A, Yao X and Giuseppone N 2020 Chem. Rev. 120 310
[8] Comstock M J, Cho J, Kirakosian A and Crommie M F 2005 Phys. Rev. B 72 153414
[9] Tanaka H, Ikeda T, Takeuchi M, Sada K, Shinkai S and Kawai T 2011 ACS Nano 5 9575
[10] Yan S C, Ding Z J, Xie N, Gong H Q, Sun Q, Guo Y, Shan X Y, Meng S and Lu X H 2012 ACS Nano 6 4132
[11] Gehrig J C, Penedo M, Parschau M, Schwenk J, Marioni M A, Hudson E W and Hug H J 2017 Nat. Commun. 8 14404
[12] Barth J V, Brune H, Ertl G and Behm R J 1990 Phys. Rev. B 42 9307
[13] Fujita D, Amemiya K, Yakabe T, Nejoh H, Sato T and Iwatsuki M 1999 Surf. Sci. 423 160
[14] Goyhenex C and Bulou H 2001 Phys. Rev. B 63 235404
[15] Bulou H and Goyhenex C 2002 Phys. Rev. B 65 045407
[16] Darling S B, Rosenbaum A W, Wang Y and Sibener S J 2002 Langmuir 18 7462
[17] Hanke F and Björk J 2013 Phys. Rev. B 87 235422
[18] Mette G, Sutter D, Gurdal Y, Schnidrig S, Probst B, Iannuzzi M, Hutter J, Alberto R and Osterwalder J 2016 Nanoscale 8 7958
[19] Gurdal Y, Hutter J and Iannuzzi M 2017 J. Phys. Chem. C 121 11416
[20] Chen W, Madhavan V, Jamneala T and Crommie M F 1998 Phys. Rev. Lett. 80 1469
[21] Yan S C, Xie N, Gong H Q, Sun Q, Guo Y, Shan X Y and Lu X H 2012 Chin. Phys. Lett. 29 46803
[22] Weber I, Gerrard N, Hodgson A and Morgenstern K 2019 J. Phys. Chem. C 123 6861
[23] Wang J, McEntee M, Tang W, Neurock M, Baddorf A P, Maksymovych P and Yates J T 2016 J. Am. Chem. Soc. 138 1518
[24] Iancu V and Hla S-W 2006 Proc. Natl. Acad. Sci. U. S. A. 103 13718
[25] Hao D, Tang X Q, An Y, Sun L H, Li J M, Dong A N, Shan X Y and Lu X H 2021 J. Phys. Chem. Lett. 12 2011
[26] Giannozzi P, Andreussi O, et al. 2017 J. Phys.: Condens. Matter 29 465901
[27] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[28] Dal Corso A 2014 Comp. Mater. Sci. 95 337
[29] Prandini G, Marrazzo A, Castelli I E, Mounet N and Marzari N 2018 npj Comput. Mater. 4 72
[30] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[31] Methfessel M and Paxton A T 1989 Phys. Rev. B 40 3616
[32] Grimme S 2006 J. Comput. Chem. 27 1787
[33] Reckien W, Eggers M and Bredow T 2014 Beilstein J. Org. Chem. 10 1775
[34] Johnston K and Harmandaris V 2011 J. Phys. Chem. C 115 14707
[35] Syomin D, Kim J, Koel B E and Ellison G B 2001 J. Phys. Chem. B 105 8387
[36] Carrasco J, Liu W, Michaelides A and Tkatchenko A 2014 J. Chem. Phys. 140 084704
[37] Hughes Z E, Baev A, Prasad P N and Walsh T R 2017 Phys. Rev. B 95 205425
[38] Maurer R J, Ruiz V G, Camarillo-Cisneros J, Liu W, Ferri N, Reuter K and Tkatchenko A 2016 Prog. Surf. Sci. 91 72
[39] McNellis E R, Meyer J and Reuter K 2009 Phys. Rev. B 80 205414
[40] Kim H W, Han M, Shin H J, Lim S, Oh Y, Tamada K, Hara M, Kim Y, Kawai M and Kuk Y 2011 Phys. Rev. Lett. 106 146101
[1] Effect of fluorine groups and different terminal chains on the electro-isomerization of azobenzene liquid crystals
Jing-Jing Xiong(熊晶晶), Dong Shen(沈冬), Zhi-Gang Zheng(郑致刚), Xiao-Qian Wang(王骁乾). Chin. Phys. B, 2016, 25(9): 096401.
[2] Azobenzene mesogens mediated preparation of SnS nanocrystals encapsulated with in-situ N-doped carbon and their enhanced electrochemical performance for lithium ion batteries application
Meng Wang(王勐), Yang Zhou(周旸), Junfei Duan(段军飞), Dongzhong Chen(谌东中). Chin. Phys. B, 2016, 25(9): 096102.
[3] Nonlinear optical properties of an azobenzene polymer
Zeng Yi (曾艺), Pan Zhi-Hua (潘志华), Zhao Fu-Li (赵付丽), Qin Mu (秦苜), Zhou Yan (周延), Wang Chang-Shun (王长顺). Chin. Phys. B, 2014, 23(2): 024212.
[4] Manipulation and control of a single molecular rotor on Au (111) surface
Zhang Hai-Gang(张海刚), Mao Jin-Hai(毛金海), Liu Qi(刘奇), Jiang Nan(江楠), Zhou Hai-Tao(周海涛), Guo Hai-Ming(郭海明), Shi Dong-Xia(时东霞), and Gao Hong-Jun(高鸿钧). Chin. Phys. B, 2010, 19(1): 018105.
[5] Modulational instability of incoherently coupled beams in azobenzene-containing polymer with photoisomerization nonlinearity
Zhang Bing-Zhi(张冰志), Cui Hu(崔虎), and She Wei-Long (佘卫龙). Chin. Phys. B, 2009, 18(1): 209-214.
[6] Rectifying effect of heterojunction fabricated in freestanding thin film of polyaniline containing azobenzene side-chain
Yin Zhi-Hua(尹志华), Long Yun-Ze(龙云泽), Huang Kun(黄琨), Wan Mei-Xiang(万梅香), and Chen Zhao-Jia(陈兆甲). Chin. Phys. B, 2009, 18(1): 298-302.
[7] Photophysical characteristics of polyaniline with photochromic azobenzene side groups
Feng Wei (封伟), Huang Kun (黄琨), Wan Mei-Xiang (万梅香). Chin. Phys. B, 2005, 14(2): 306-310.
No Suggested Reading articles found!