Please wait a minute...
Chin. Phys. B, 2008, Vol. 17(2): 424-430    DOI: 10.1088/1674-1056/17/2/013
GENERAL Prev   Next  

Generation of unconventional geometric phase gates in ion trap-optical cavity system by squeezed operators

Zhang Ying-Qiao(张英俏)a)b)†, Jin Xing-Ri(金星日)b), and Zhang Shou(张寿)a)b)‡
a Center for the Condensed-Matter Science and Technology, Harbin Institute of Technology, Harbin 150001, China; Department of Physics, College of Science, Yanbian University, Yanji 133002, China
Abstract  Based on squeezed operators this paper has implemented an ideal unconventional geometric quantum gate (GQG) in ion trap-optical cavity system by radiating the trapped ions with the cavity field of frequency ωc and an external laser field of frequency ωL. It can ensure that the gate time is shorter than the coherence time for qubits and the decay time of the optical cavity by appropriately tuning the ionic transition frequency ω0, the frequencies of the cavity mode ωc and the vibrational mode ν. It has also realized the unconventional GQG under the influence of the cavity decay based on the squeezed-like operators and found that the present scheme works well for the smaller cavity decay by investigating the corresponding fidelity and success probability.
Keywords:  quantum phase gates      squeezed operators      trapped ions  
Received:  11 April 2007      Revised:  03 July 2007      Accepted manuscript online: 
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  42.50.Dv (Quantum state engineering and measurements)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 60667001) and the Science Foundation of Yanbian University in China (Grant No 2007-31).

Cite this article: 

Zhang Ying-Qiao(张英俏), Jin Xing-Ri(金星日), and Zhang Shou(张寿) Generation of unconventional geometric phase gates in ion trap-optical cavity system by squeezed operators 2008 Chin. Phys. B 17 424

[1] New designed helical resonator to improve measurement accuracy of magic radio frequency
Tian Guo(郭天), Peiliang Liu(刘培亮), and Chaohong Lee(李朝红). Chin. Phys. B, 2022, 31(9): 093201.
[2] Quantum computation and simulation with vibrational modes of trapped ions
Wentao Chen(陈文涛), Jaren Gan, Jing-Ning Zhang(张静宁), Dzmitry Matuskevich, and Kihwan Kim(金奇奂). Chin. Phys. B, 2021, 30(6): 060311.
[3] Scheme to measure the expectation value of a physical quantity in weak coupling regime
Jie Zhang(张杰), Chun-Wang Wu(吴春旺), Yi Xie(谢艺), Wei Wu(吴伟), and Ping-Xing Chen(陈平形). Chin. Phys. B, 2021, 30(3): 033201.
[4] Multi-ion Mach–Zehnder interferometer with artificial nonlinear interactions
Hu Yan-Min (胡艳敏), Yang Wan-Li (杨万里), Xiao Xing (肖兴), Feng Mang (冯芒), Li Chao-Hong (李朝红). Chin. Phys. B, 2014, 23(3): 034205.
[5] Linear ion trap imperfection and the compensation of excess micromotion
Xie Yi(谢艺), Wan Wei(万威), Zhou Fei(周飞), Chen Liang(陈亮), Li Chao-Hong(李朝红), and Feng Mang(冯芒) . Chin. Phys. B, 2012, 21(6): 063201.
[6] Irreversibility of a quantum walk induced by controllable decoherence employing random unitary operations
Xu You-Yang(徐酉阳), Zhou Fei(周飞), Chen Liang(陈亮) Xie Yi(谢艺), Xue Peng(薛鹏), and Feng Mang(冯芒) . Chin. Phys. B, 2012, 21(4): 040304.
[7] Preparation of the four-qubit cluster states in cavity QED and the trapped-ion system
Zheng Xiao-Juan (郑小娟), Xu Hui(徐慧), Fang Mao-Fa(方卯发), and Zhu Kai-Cheng(朱开成). Chin. Phys. B, 2010, 19(3): 034207.
[8] Two-qutrit maximally entangled states prepared via adiabatic passage in ion-trapped system
Huang Bin(黄彬), Lin Xia(林霞), Lin Hui(林慧), Cai Zhen-Hua(蔡振华), and Yang Rong-Can(杨榕灿). Chin. Phys. B, 2010, 19(12): 124206.
[9] Measurement of the secular motion frequency and the space charge density in the linear ion trap
Zhou Fei(周飞), Xie Yi(谢艺), Xu You-Yang(徐酉阳), Huang Xue-Ren(黄学人), and Feng Mang(冯芒). Chin. Phys. B, 2010, 19(11): 113206.
[10] Robust scheme for implemention of quantum phase gates for two atoms
Zheng Shi-Biao(郑仕标). Chin. Phys. B, 2009, 18(8): 3453-3456.
[11] Quantum logic gates with two-level trapped ions beyond Lamb--Dicke limit
Zheng Xiao-Juan(郑小娟), Luo Yi-Min(罗益民), and Cai Jian-Wu(蔡建武). Chin. Phys. B, 2009, 18(4): 1352-1356.
[12] Scheme for the implementation of 1→3 optimal phase-covariant quantum cloning in ion-trap systems
Yang Rong-Can(杨榕灿), Li Hong-Cai(李洪才), Lin Xiu(林秀), Huang Zhi-Ping(黄志平), and Xie Hong(谢鸿). Chin. Phys. B, 2008, 17(3): 967-970.
[13] Scheme for implementing quantum dense coding with four-particle decoherence-free states in an ion trap
Zheng Xiao-Juan(郑小娟), Cao Shuai(曹帅), Fang Mao-Fa(方卯发), and Liao Xiang-Ping(廖湘萍). Chin. Phys. B, 2008, 17(2): 431-434.
[14] Cluster states prepared by using hot trapped ions
Yang Rong-Can(杨榕灿), Li Hong-Cai(李洪才), Lin Xiu(林秀), and Huang Zhi-Ping(黄志平). Chin. Phys. B, 2007, 16(8): 2219-2223.
[15] One-step discrimination scheme on N-particle Greenberger--Horne--Zeilinger bases
Wang Xin-Wen(汪新文), Liu Xiang(刘翔), and Fang Mao-Fa(方卯发). Chin. Phys. B, 2007, 16(5): 1215-1219.
No Suggested Reading articles found!