Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(1): 010503    DOI: 10.1088/1674-1056/ae1451
SPECIAL TOPIC — Biophysical circuits: Modeling & applications in neuroscience   Next  

Energy adaptive regulation of a multifunctional neuron circuit

Xi-kui Hu(胡锡奎)†, Juan Yang(杨娟), and Ping Zhou(周平)
School of Electronic Science and Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
Abstract  This study constructs a dual-capacitor neuron circuit (connected via a memristor) integrated with a phototube and a thermistor to simulate the ability of biological neurons to simultaneously perceive light and thermal stimuli. The circuit model converts photothermal signals into electrical signals, and its dynamic behavior is described using dimensionless equations derived from Kirchhoff's laws. Based on Helmholtz's theorem, a pseudo-Hamiltonian energy function is introduced to characterize the system's energy metabolism. Furthermore, an adaptive control function is proposed to elucidate temperature-dependent firing mechanisms, in which temperature dynamics are regulated by pseudo-Hamiltonian energy. Numerical simulations using the fourth-order Runge—Kutta method, combined with bifurcation diagrams, Lyapunov exponent spectra, and phase portraits, reveal that parameters such as capacitance ratio, phototube voltage amplitude/frequency, temperature, and thermistor reference resistance significantly modulate neuronal firing patterns, inducing transitions between periodic and chaotic states. Periodic states typically exhibit higher average pseudo-Hamiltonian energy than chaotic states. Two-parameter analysis demonstrates that phototube voltage amplitude and temperature jointly govern firing modes, with chaotic behavior emerging within specific parameter ranges. Adaptive control studies show that gain/attenuation factors, energy thresholds, ceiling temperatures, and initial temperatures regulate the timing and magnitude of system temperature saturation. During both heating and cooling phases, temperature dynamics are tightly coupled with pseudo-Hamiltonian energy and neuronal firing activity. These findings validate the circuit's ability to simulate photothermal perception and adaptive temperature regulation, contributing to a deeper understanding of neuronal encoding mechanisms and multimodal sensory processing.
Keywords:  photothermal sensing neuron      pseudo-Hamiltonian energy      chaotic firing      adaptive temperature control      bifurcation analysis  
Received:  19 August 2025      Revised:  01 October 2025      Accepted manuscript online:  17 October 2025
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
  05.45.Gg (Control of chaos, applications of chaos)  
Fund: This work was supported by the Natural Science Foundation of Chongqing (Grant No. CSTB2024NSCQ-MSX0944).
Corresponding Authors:  Xi-kui Hu     E-mail:  huxk@cqupt.edu.cn

Cite this article: 

Xi-kui Hu(胡锡奎), Juan Yang(杨娟), and Ping Zhou(周平) Energy adaptive regulation of a multifunctional neuron circuit 2026 Chin. Phys. B 35 010503

[1] Gundersen V, Storm-Mathisen J and Bergersen L H 2015 Physiol. Rev. 95 695
[2] Harris K D and Mrsic-Flogel T D 2013 Nature 503 51
[3] Walker E Y, Sinz F H, Cobos E, Muhammad T, Froudarakis E, Fahey P G, Ecker A S, Reimer J, Pitkow X and Tolias A S 2019 Nat. Neurosci. 22 2060
[4] Wang Y Q, Hartung J E, Goad A, et al. 2024 Adv. Healthc. Mater. 13 2302330
[5] Gracheva E O, Ingolia N T, Kelly Y M, Cordero-Morales J F, Hollopeter G, Chesler A T, Sáchez E E, Perez J C,Weissman J S and Julius D 2010 Nature 464 1006
[6] Zhang K X, D’Souza S, Upton B A,, et al. 2020 Nature 585 420
[7] Guo, X E, Sun, Z D, Zhu, Y, et al. 2024 Adv. Mater. 36 2406778
[8] Sharma K and Sharma M 2023 Environ. Res. 236 116826
[9] Blasch E, Cruise R, Aved AJ, Majumder UK and Rovito TV 2019 AI Mag. 40 50
[10] Wang Y, Garg R, Cohen-Karni D and Cohen-Karni T 2023 Nat. Rev. Bioeng. 1 193
[11] Richter L M A and Gjorgjieva J 2017 Curr. Opin. Neurobiol. 46 39
[12] Mishra A, Ghosh S, Dana S K, Kapitaniak T and Hens C 2021 Chaos 31 052101
[13] Xie Y, Yao Z, Hu X and Ma J 2022 Chin. Phys. B 30 120510
[14] Zhou P, Zhang X, Hu X and Ren G 2022 Nonlinear Dynam. 110 1879
[15] Hu X, Zhu S, Yang J, Yao Z, Zhou P and Ma J 2024 Commun. Theor. Phys. 76 105004
[16] Apata C O, Tang Y R, Zhou Y F, Jiang L and Pei QM2024 Chin. Phys. B 33 58704
[17] Bloom M, Evans E and Mouritsen O G 1991 Q. Rev. Biophys. 24 293
[18] Guo Q, Zhou P, Zhang X and Zhu Z 2025 Cogn. Neurodynamics 19 75
[19] Chai X, Wang X, Zhang J, Kong D and Sun G 2025 Commun. Theor. Phys. 77 105003
[20] Yang F F, Ma J and Ren G D 2024 J. Theor. Biol. 578 111686
[21] Wan J Y, Wu F Q, Ma J and Wang W 2024 Chin. Phys. B 33 050504
[22] Yang X, Taylor B,Wu A, Chen Y and Chua L O 2022 IEEE T. Circuits- I 69 1845
[23] Yang F F, Ma J and Wu F Q 2024 Chaos Soliton. Fract. 187 115361
[24] Jiang W, Li J, Liu H, Qian X, Ge Y, Wang L and Duan S2022 Chin. Phys. B 31 040702
[25] Shang C, Sun K,Wang H, Yao Z and He S 2023 Nonlinear Dynam. 111 20347
[26] Xu L, Qi G Y and Ma J 2022 Appl. Math. Model. 101 503
[27] Ding Q, Wu Y, Li T, Yu D and Jia Y 2023 Chaos Soliton. Fract. 171 113464
[28] Njitacke Z T, Awrejcewicz J, Ramakrishnan B, Rajagopal K and Kengne J 2022 Nonlinear Dynam. 107 2867
[29] Li Y N, Ma J and Xie Y 2024 Nonlinear Dynam. 112 7459
[30] Xu Y, Liu M, Zhu Z and Ma J 2020 Chin. Phys. B 29 098704
[31] Yeh F, Jara-Oseguera A and Aldrich R W 2023 P. Natl. Acad. Sci. USA 120 e2301528120
[32] Fossi J T, Deli V, Edima H C, Njitacke Z T, Feudjio K F and Atangana J 2022 Eur. Phys. J. B 95 66
[33] Hu X K, Yang J, Song Z and Zhou P 2025 Phys. Scripta 100 075232
[34] Jia J, Zhou P, Zhang X and Ma J 2024 AEU-Int. J. Electron. C. 174 155069
[35] Sarasola C, Torrealdea F J, d’Anjou A, Moujahid A and GrañM 2004 Phys. Rev. E 69 011606
[36] Alonso L M and Marder E 2020 eLife 9 e55470
[37] Wendering P and Nikoloski Z 2023 Biotechnol. Adv. 67 108203
[38] Wu F Q, Guo Y T and Ma J 2023 Sci. China Technol. Sc. 66 3139
[1] Bifurcation dynamics govern sharp wave ripple generation and rhythmic transitions in hippocampal-cortical memory networks
Xin Jiang(姜鑫), Jialiang Nie(聂嘉良), Denggui Fan(樊登贵), and Lixia Duan(段利霞). Chin. Phys. B, 2025, 34(12): 128702.
[2] Bifurcation analysis and control study of improved full-speed differential model in connected vehicle environment
Wen-Huan Ai(艾文欢), Zheng-Qing Lei(雷正清), Dan-Yang Li(李丹洋), Dong-Liang Fang(方栋梁), and Da-Wei Liu(刘大为). Chin. Phys. B, 2024, 33(7): 070503.
[3] Exact solutions of a time-fractional modified KdV equation via bifurcation analysis
Min-Yuan Liu(刘敏远), Hui Xu(许慧), and Zeng-Gui Wang(王增桂). Chin. Phys. B, 2023, 32(12): 120204.
[4] Bifurcation analysis of visual angle model with anticipated time and stabilizing driving behavior
Xueyi Guan(管学义), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2022, 31(7): 070507.
[5] Extremely hidden multi-stability in a class of two-dimensional maps with a cosine memristor
Li-Ping Zhang(张丽萍), Yang Liu(刘洋), Zhou-Chao Wei(魏周超), Hai-Bo Jiang(姜海波), Wei-Peng Lyu(吕伟鹏), and Qin-Sheng Bi(毕勤胜). Chin. Phys. B, 2022, 31(10): 100503.
[6] Stabilization strategy of a car-following model with multiple time delays of the drivers
Weilin Ren(任卫林), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2021, 30(12): 120506.
[7] Dual mechanisms of Bcl-2 regulation in IP3-receptor-mediated Ca2+ release: A computational study
Hong Qi(祁宏), Zhi-Qiang Shi(史志强), Zhi-Chao Li(李智超), Chang-Jun Sun(孙长君), Shi-Miao Wang(王世苗), Xiang Li(李翔), and Jian-Wei Shuai(帅建伟). Chin. Phys. B, 2021, 30(10): 108704.
[8] A novel four-wing chaotic attractor generated from a three-dimensional quadratic autonomous system
Dong En-Zeng(董恩增), Chen Zai-Ping(陈在平), Chen Zeng-Qiang(陈增强), and Yuan Zhu-Zhi(袁著祉). Chin. Phys. B, 2009, 18(7): 2680-2689.
[9] The generation of a hyperchaotic system based on a three-dimensional autonomous chaotic system
Wang Jie-Zhi (王杰智), Chen Zeng-Qiang (陈增强), Yuan Zhu-Zhi (袁著祉). Chin. Phys. B, 2006, 15(6): 1216-1225.
No Suggested Reading articles found!