Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 050503    DOI: 10.1088/1674-1056/ad322b
GENERAL Prev   Next  

Fractional-order heterogeneous memristive Rulkov neuronal network and its medical image watermarking application

Dawei Ding(丁大为), Yan Niu(牛炎), Hongwei Zhang(张红伟)†, Zongli Yang(杨宗立), Jin Wang(王金), Wei Wang(王威), and Mouyuan Wang(王谋媛)
School of Electronics and Information Engineering, Anhui University, Hefei 230601, China
Abstract  This article proposes a novel fractional heterogeneous neural network by coupling a Rulkov neuron with a Hopfield neural network (FRHNN), utilizing memristors for emulating neural synapses. The study firstly demonstrates the coexistence of multiple firing patterns through phase diagrams, Lyapunov exponents (LEs), and bifurcation diagrams. Secondly, the parameter related firing behaviors are described through two-parameter bifurcation diagrams. Subsequently, local attraction basins reveal multi-stability phenomena related to initial values. Moreover, the proposed model is implemented on a microcomputer-based ARM platform, and the experimental results correspond to the numerical simulations. Finally, the article explores the application of digital watermarking for medical images, illustrating its features of excellent imperceptibility, extensive key space, and robustness against attacks including noise and cropping.
Keywords:  fractional order      memristors      Rulkov neuron      medical image watermarking  
Received:  26 December 2023      Revised:  22 February 2024      Accepted manuscript online:  11 March 2024
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  87.18.Sn (Neural networks and synaptic communication)  
  05.45.Vx (Communication using chaos)  
Fund: This study was funded by the National Natural Science Foundation of China (Grant No. 12302070) and the Ningxia Science and Technology Leading Talent Training Program (Grant No. 2022GKLRLX04).
Corresponding Authors:  Hongwei Zhang     E-mail:  hwzhang@ahu.edu.cn

Cite this article: 

Dawei Ding(丁大为), Yan Niu(牛炎), Hongwei Zhang(张红伟), Zongli Yang(杨宗立), Jin Wang(王金), Wei Wang(王威), and Mouyuan Wang(王谋媛) Fractional-order heterogeneous memristive Rulkov neuronal network and its medical image watermarking application 2024 Chin. Phys. B 33 050503

[1] Preissl H, Lutzenberger W and Pulvermüller F 1996 Brain Sci. 19 307
[2] Lehnertz K and Elger C E 1998 Phys. Rev. Lett. 80 5019
[3] Mormann F, Andrzejak R G, Elger C E and Lehnertz K 2007 Brain 130 314
[4] Breakspear M 2006 Aust. N. Z. J. Psychiatry 40 20
[5] Li Z J, Xie W Q, Zeng J F and Zeng Y C 2023 Chin. Phys. B 32 010503
[6] Xu Q, Chen X J, Chen B, Wu H G, Li Z and Bao H 2023 Nonlinear Dyn. 111 8737
[7] Lu Y M, Wang C H, Deng Q L and Xu C 2022 Chin. Phys. B 31 060502
[8] Rulkov N F 2002 Phys. Rev. E 65 041922
[9] Muni S S, Rajagopal K, Karthikeyan A and Arun S 2022 Chaos, Solitons & Fractals 155 111759
[10] Bao H, Hu A H, Liu W B and Bao B C 2020 IEEE Trans. Neural Netw. Learning Syst. 31 502
[11] Deng H Y, Gui R and Yao Y G 2023 Chin. Phys. B 32 120501
[12] Hodgkin A L and Huxley A F 1952 The Journal of Physiology 117 500
[13] Behdad R, Binczak S, Dmitrichev A S, Nekorkin V I and Bilbault J M 2015 IEEE Trans. Neural Netw. Learning Syst. 26 1875
[14] Morris C, Lecar H 1981 Biophys. J. 35 193
[15] Chua L 2014 Semicond. Sci. Technol. 29 104001
[16] Rajamani V, Kim H and Chua L 2018 Sci. China-Inf. Sci. 61 060426
[17] Li Q D, Zeng H Z and Li J 2015 Nonlinear Dyn. 79 2295
[18] Guo Z H, Li Z J, Wang M J and Ma M L 2023 Chin. Phys. B 32 038701
[19] Xu Y, Jia Y, Ge M Y, Lu L L, Yang L J and Zhan X 2018 Neurocomputing 283 196
[20] Wu F Q, Wang C N, Jin W J and Ma J 2017 Physica A 469 81
[21] Lv M, Wang C N, Ren G D, Ma J and Song X L 2016 Nonlinear Dyn. 85 1479
[22] Wu J, Xu Y and Ma J 2017 PLoS One 12 e0174330
[23] Qi G Y and Wang Z M 2021 Chin. Phys. B 30 120516
[24] Kumar S, Strachan J P and Williams R S 2017 Nature 548 318
[25] Hong Q H, Chen H G, Sun J R and Wang C H 2022 IEEE Trans. Neural Netw. Learning Syst. 33 2106
[26] Bilotta E, Pantano P and Vena S 2017 IEEE Trans. Neural Netw. Learning Syst. 28 1228
[27] Gu S Q, He S B, Wang H H and Du B X 2021 Chaos, Solitons & Fractals 143 110613
[28] Ding D W, Chen X Y, Yang Z L, Hu Y B, Wang M Y, Zhang H W and Zhang X 2022 Chaos, Solitons & Fractals 158 112014
[29] Peng Q Q, Gu S Q, Leng X X and Du B X 2021 Phys. Scr. 96 125217
[30] Xu Q, Huang L P, Wang N, Bao H, Wu H G and Chen M 2023 Nonlinear Dyn. 111 20447
[31] Lin H R, Wang C H, Cui L, Sun Y C, Xu C and Yu F 2022 IEEE Trans. Ind. Inf. 18 8839
[32] Zhang S, Zheng J H, Wang X P, Zeng Z H and He S B 2020 Nonlinear Dyn 102 2821
[33] Xu Q, Liu T, Feng C T, Bao H, Wu H G and Bao B C 2021 Chin. Phys. B 30 128702
[34] Andalibi M, Chandler D 2015 IEEE Trans. Image Process. 24 5060
[1] Dynamical behaviors in discrete memristor-coupled small-world neuronal networks
Jieyu Lu(鲁婕妤), Xiaohua Xie(谢小华), Yaping Lu(卢亚平), Yalian Wu(吴亚联), Chunlai Li(李春来), and Minglin Ma(马铭磷). Chin. Phys. B, 2024, 33(4): 048701.
[2] High-performance artificial neurons based on Ag/MXene/GST/Pt threshold switching memristors
Xiao-Juan Lian(连晓娟), Jin-Ke Fu(付金科), Zhi-Xuan Gao(高志瑄),Shi-Pu Gu(顾世浦), and Lei Wang(王磊). Chin. Phys. B, 2023, 32(1): 017304.
[3] Fabrication and investigation of ferroelectric memristors with various synaptic plasticities
Qi Qin(秦琦), Miaocheng Zhang(张缪城), Suhao Yao(姚苏昊), Xingyu Chen(陈星宇), Aoze Han(韩翱泽),Ziyang Chen(陈子洋), Chenxi Ma(马晨曦), Min Wang(王敏), Xintong Chen(陈昕彤), Yu Wang(王宇),Qiangqiang Zhang(张强强), Xiaoyan Liu(刘晓燕), Ertao Hu(胡二涛), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(7): 078502.
[4] The dynamics of a memristor-based Rulkov neuron with fractional-order difference
Yan-Mei Lu(卢艳梅), Chun-Hua Wang(王春华), Quan-Li Deng(邓全利), and Cong Xu(徐聪). Chin. Phys. B, 2022, 31(6): 060502.
[5] Finite-time complex projective synchronization of fractional-order complex-valued uncertain multi-link network and its image encryption application
Yong-Bing Hu(胡永兵), Xiao-Min Yang(杨晓敏), Da-Wei Ding(丁大为), and Zong-Li Yang(杨宗立). Chin. Phys. B, 2022, 31(11): 110501.
[6] Analysis and implementation of new fractional-order multi-scroll hidden attractors
Li Cui(崔力), Wen-Hui Luo(雒文辉), and Qing-Li Ou(欧青立). Chin. Phys. B, 2021, 30(2): 020501.
[7] Controlling chaos and supressing chimeras in a fractional-order discrete phase-locked loop using impulse control
Karthikeyan Rajagopal, Anitha Karthikeyan, and Balamurali Ramakrishnan. Chin. Phys. B, 2021, 30(12): 120512.
[8] Nonlinear fast-slow dynamics of a coupled fractional order hydropower generation system
Xiang Gao(高翔), Diyi Chen(陈帝伊), Hao Zhang(张浩), Beibei Xu(许贝贝), Xiangyu Wang(王翔宇). Chin. Phys. B, 2018, 27(12): 128202.
[9] Leader-following consensus of discrete-time fractional-order multi-agent systems
Erfan Shahamatkhah, Mohammad Tabatabaei. Chin. Phys. B, 2018, 27(1): 010701.
[10] Using wavelet multi-resolution nature to accelerate the identification of fractional order system
Yuan-Lu Li(李远禄), Xiao Meng(孟霄), Ya-Qing Ding(丁亚庆). Chin. Phys. B, 2017, 26(5): 050201.
[11] Controllability of fractional-order Chua's circuit
Zhang Hao (张浩), Chen Di-Yi (陈帝伊), Zhou Kun (周坤), Wang Yi-Chen (王一琛). Chin. Phys. B, 2015, 24(3): 030203.
[12] A novel adaptive-impulsive synchronization of fractional-order chaotic systems
Leung Y. T. Andrew, Li Xian-Feng, Chu Yan-Dong, Zhang Hui. Chin. Phys. B, 2015, 24(10): 100502.
[13] Function projective lag synchronization of fractional-order chaotic systems
Wang Sha (王莎), Yu Yong-Guang (于永光), Wang Hu (王虎), Ahmed Rahmani. Chin. Phys. B, 2014, 23(4): 040502.
[14] Generalized projective synchronization of the fractional-order chaotic system using adaptive fuzzy sliding mode control
Wang Li-Ming (王立明), Tang Yong-Guang (唐永光), Chai Yong-Quan (柴永泉), Wu Feng (吴峰). Chin. Phys. B, 2014, 23(10): 100501.
[15] A fractional order hyperchaotic system derived from Liu system and its circuit realization
Han Qiang (韩强), Liu Chong-Xin (刘崇新), Sun Lei (孙蕾), Zhu Da-Rui (朱大锐). Chin. Phys. B, 2013, 22(2): 020502.
No Suggested Reading articles found!