Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(11): 114703    DOI: 10.1088/1674-1056/ae0896
SPECIAL TOPIC — Heat conduction and its related interdisciplinary areas Prev   Next  

A molecular dynamics study of bubble nucleation on grooved surfaces: Effects of wettability and heat flux

Mian Yu(余绵)1, Bingheng Li(李丙衡)1, Lianfeng Wu(吴连锋)2, Lianxiang Ma(马连湘)1, Xiangwen Meng(孟祥文)1,†, and Yuanzheng Tang(唐元政)1,‡
1 College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China;
2 State Key Laboratory of Marine Coatings, Marine Chemical Research Institute Co., Ltd., Qingdao 266071, China
Abstract  Bubble nucleation plays a crucial role in boiling heat transfer and other applications. Traditional experiments struggle to capture its microscopic mechanisms, making molecular dynamics simulations a powerful tool for such studies. This work uses molecular dynamics simulations to investigate bubble nucleation of water on copper surfaces with sinusoidal groove roughness under varying heat flux and surface wettability. Results show that at the same wettability, higher heat flux leads to higher surface temperatures after the same heating time, promoting bubble nucleation, growth, and departure. Moreover, under constant heat flux, stronger surface hydrophilicity enhances heat transfer from the solid to the liquid, further accelerating the nucleation. This study provides valuable insights into the mechanism of bubble nucleation and offers theoretical guidance for enhancing heat transfer.
Keywords:  molecular dynamics      bubble nucleation      wettability conditions      heat flux  
Received:  16 July 2025      Revised:  09 September 2025      Accepted manuscript online:  18 September 2025
PACS:  47.11.Mn (Molecular dynamics methods)  
  47.55.dd (Bubble dynamics)  
  68.35.Ct (Interface structure and roughness)  
  61.30.Hn (Surface phenomena: alignment, anchoring, anchoring transitions, surface-induced layering, surface-induced ordering, wetting, prewetting transitions, and wetting transitions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 52176077).
Corresponding Authors:  Xiangwen Meng, Yuanzheng Tang     E-mail:  meng_qust2013@163.com;tangyuanzheng@163.com

Cite this article: 

Mian Yu(余绵), Bingheng Li(李丙衡), Lianfeng Wu(吴连锋), Lianxiang Ma(马连湘), Xiangwen Meng(孟祥文), and Yuanzheng Tang(唐元政) A molecular dynamics study of bubble nucleation on grooved surfaces: Effects of wettability and heat flux 2025 Chin. Phys. B 34 114703

[1] Yang S M and Tao W Q 2006 Heat Transfer 4th Edn. (Beijing: Higher Education Press) p. 316 (in Chinese)
[2] Ma Z Y, Zhang L T, Bu S S, SunW, Chen D Q and Pan LM2019 Prog. Nucl. Energy 112 135
[3] Al Omari S A B, Bashir A A K Al Hammadi M I, Al Hamalawi F J, Elnajjar E and Ghazal A M 2017 Int. Commun. Heat Mass Transfer 86 71
[4] Zhang Y H, L D Gu, Wang Z Y, Fu X L, Cao Q and Yang Y H 2017 Appl. Therm. Eng. 114 186
[5] Kang M G 2018 Exp. Therm. Fluid Sci. 97 375
[6] Chakraborty P, Tonks M R and Pastore G 2014 J. Nucl. Mater. 452 95
[7] Evans J H, Galindo R E and van Veen A 2003 Nuclear Inst. Meth. Phys. Res. B 217 276
[8] Zhang N X, Daniel O, Liu J H and Khellil S 2024 Heat Transfer Eng. 45 433
[9] Wang J X, Yu B B, Qian C Y, Shi J Y and Chen J P 2023 Therm. Sci. Eng. Prog. 45 102150
[10] He Y C, Hu C Z, Jiang B, Sun Z H, Ma J, Li H Y and Tang D W 2022 Fuel 324 124778
[11] Vieira G C, Flórez M J P and Mantelli M B H 2020 Int. J. Heat Mass Transfer 156 119832
[12] Kulik A V, Mokrin S N, Kraevskii A M, Minaev S S, Guzev M A and Chudnovskii V M 2024 Tech. Phys. Lett. 50 198
[13] Kohany T B, Arogeti M, Malka A and Sher E 2023 Energies 16 6763
[14] Chudnovskii V M, Yusupov V I, Dydykin A V, Nevozhai V I, Kisilev A Y, Zhukov S A and Bagratashvili V N 2017 Quantum Electron. 47 361
[15] Reiss C, Gerschenfeld A and Colin C 2024 Nucl. Eng. Des. 428 113453
[16] Mokos A, Patel R A, Karalis K, Churakov SV and Prasianakis N I 2024 Int. J. Heat Mass Transfer 230 125747
[17] Jin-Seong Y, Won L C, Heepyo H, Hyukjae K, Hyun K J, Geon-Woo K, Goon-Cherl P and Kyu C H 2024 Appl. Therm. Eng. 236 121906
[18] Wang D H and Guo Z Y 2020 New J. Chem. 44 4529
[19] Aghajanzadeh S, Sultana A, Ziaiifar A M and Khalloufi S 2024 Food Res. Int. 188 114494
[20] Jesus M L, Renato M A, Andrea M, Sudheera Y, Mariana H M, John G, Onur A, Sergi G S and E M E 2023 J. Plant Interact 18 2271492
[21] Pang R Y 2023 Molecular dynamics study of pool boiling on arrayed groove surfaces (M.S. Thesis) (Tianjin: Hebei University of Technology) (in Chinese)
[22] Miao S S and Xia G D 2024 J. Mol. Liq 400 124457
[23] Miao R C, Zhang S Z, Chen Z X and Li Y 2020 Chem. Ind. Eng. Prog. 39 1641
[24] Zhao H 2020 Molecular dynamics simulation study on the effect of hydrophobic-hydrophilic mixed wettability surface on water film boiling heat transfer (M.S. Thesis) (Beijing: North China Electric Power University) (in Chinese)
[25] Liu F R, Chen Z X and Li Y H 2024 J. At. Mol. Phys. 41 032001
[26] Zhou W J, Zhang Y H and Wei J J 2022 Langmuir 38 1223
[27] Bai P 2022 Molecular dynamics study of the effects of surface roughness and wettability on boiling (Ph.D. Dissertation) (Beijing: North China Electric Power University) (in Chinese)
[28] Liu H Q, Deng W, Ding P and Zhao J Y 2021 Nucl. Eng. Des. 382 111400
[29] Yin X Y 2020 Mechanism of boiling heat transfer enhancement in nanofluids by molecular dynamics simulation (Ph.D. Dissertation) (Dalian: Dalian University of Technology) (in Chinese)
[30] Wang Z 2022 Molecular dynamics study on wettability characteristics and enhanced boiling heat transfer mechanism of nanofluids (Ph.D. Dissertation) (Shanghai: University of Shanghai for Science & Technology) (in Chinese)
[31] Vladislav A Y, Guillaume A and Molinari J F 2014 Tribol. Lett. 56 171
[32] Deng W, Ma S H, Li W M, Liu H Q and Zhao J Y 2022 Int. J. Heat Mass Transfer 191 122856
[33] Berendsen H J C, Grigera J R and Straatsma T P 1987 J. Phys. Chem. 91 6269
[34] Kusalik P G and Svishchev I M 1994 Science 265 1219
[35] Hockney R W and Eastwood J W 2021 Computer Simulation Using Particles (1st edn) (Boca Raton: CRC Press) pp. 267–269[36] Ryckaert J P, Ciccotti G and Berendsen H J C 1977 J. Comput. Phys. 23 327
[37] Rafiee J, Mi X, Gullapalli H, Thomas A V, Yavari F, Shi Y, Ajayan P M and Koratkar N 2012 Nat. Mater. 11 217
[38] Isaiev M, Burian S, Bulavin L, Gradeck M, Lemoine F and Termentzidis K 2016 Mol. Simul. 42 910
[39] Guo C, Ji C, Kong Y L, Liu Z G and Guo L 2023 Materials 16 1984
[40] Schneider T and Stoll E 1978 Phys. Rev. B 17 1302
[41] Steve P 1995 J. Comput. Phys. 117 1
[42] Stukowski A 2010 Modell. Simul. Mater. Sci. Eng. 18 015012
[43] Humphrey W, Dalke A and Schulten K 1996 J. Mol. Graphics 14 33
[44] Zhang K, Yang J S and Huai X L 2024 Int. J. Heat Mass Transfer 224 125323
[45] Wen S Z and Huang P 2011 Interface Science and Technology (1st edn) (Beijing: Tsinghua University Press) pp. 65–66 (in Chinese)
[46] Zhang L Y and Xu J L 2022 J. Mol. Liq. 366 120272
[47] Ge S and Chen M 2013 Acta Phys. Sin. 62 110204 (in Chinese)
[48] Kim D E, Yu D I, Jerng DW, KimMH and Ahn H S 2015 Exp. Therm. Fluid Sci. 66 173
[49] Wang Z Q,Wang P Y, Song H and Chen Z 2022 J. Mol. Liq. 347 118360
[1] Effect of impact velocity on spall behaviors of nanocrystalline iron: Molecular dynamics study
Li-Qiong Chen(陈利琼), Kui Zhao(赵奎), Kai Zhang(张开), Ze-Zhi Wen(文泽智), Hou-Jin Mei(梅后金), and Zhen-Bao Xiong(熊珍宝). Chin. Phys. B, 2025, 34(9): 096201.
[2] Molecular simulation study on phase separation of immunoglobulin G
Lv-Meng Hu(胡吕梦), Yuan-Qiang Chen(陈远强), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2025, 34(8): 088701.
[3] Anisotropic displacement threshold energy and defect distribution in diamond: PKA energy and temperature effect
Ke Wu(吴可), Zeyi Du(杜泽依), Hongyang Liu(刘洪洋), Nanyun Bao(包南云), Chengke Xu(许成科), Hongrui Wang(王泓睿), Qunchao Tong(童群超), Bo Chen(陈博), Dongdong Kang(康冬冬), Guang Wang(王广), and Jiayu Dai(戴佳钰). Chin. Phys. B, 2025, 34(8): 087104.
[4] Structure and properties of MgO melt at high pressure: A first-principles study
Min Wu(吴旻) and Zhongsen Sun(孙忠森). Chin. Phys. B, 2025, 34(8): 086301.
[5] Solubility parameters of supercritical CO2 and CO2+H2O fluids: A molecular dynamics study
Junliang Wang(王军良), Jiaqing Fang(方佳清), Ting Wu(吴婷), Quanyuan Wang(王泉源), Zhiyan Pan(潘志彦), Mian Hu(胡沔), and Min Wu(吴旻). Chin. Phys. B, 2025, 34(8): 088201.
[6] Hyperparameter optimization and force error correction of neuroevolution potential for predicting thermal conductivity of wurtzite GaN
Zhuo Chen(陈卓), Yuejin Yuan(袁越锦), Wenyang Ding(丁文扬), Shouhang Li(李寿航), Meng An(安盟), and Gang Zhang(张刚). Chin. Phys. B, 2025, 34(8): 086110.
[7] General-purpose moment tensor potential for Ga-In liquid alloys towards large-scale molecular dynamics with ab initio accuracy
Kai-Jie Zhao(赵凯杰) and Zhi-Gong Song(宋智功). Chin. Phys. B, 2025, 34(6): 066101.
[8] Depolymerization mechanism of microtubule revealed by nucleotide-dependent changes of longitudinal and lateral interactions
Bingbing Zhang(张冰冰), Ziling Huo(霍子玲), Jiaxi Li(李佳希), Jingyu Qin(覃静宇), and Yizhao Geng(耿轶钊). Chin. Phys. B, 2025, 34(6): 068702.
[9] Experimental study on the regulation of radiative heat flux by coating SiC film
Haifeng Xia(閤海峰) and Huihui Sun(孙慧慧). Chin. Phys. B, 2025, 34(5): 054402.
[10] Elastic-plastic behavior of nickel-based single crystal superalloys with γ-γ' phases based on molecular dynamics simulations
Jing-Zhao Cao(曹景昭), Yun-Guang Zhang(张云光), Zhong-Kui Zhang(张中奎), Jiang-Peng Fan(范江鹏), Qi Dong(董琪), and Ying-Ying Fang(方盈盈). Chin. Phys. B, 2025, 34(4): 046204.
[11] Molecular dynamics evaluation of self-diffusion coefficients in two-dimensional dusty plasmas
Muhammad Asif Shakoori, Misbah Khan, Haipeng Li(李海鹏), Aamir Shahzad, Maogang He(何茂刚), and Syed Ali Raza. Chin. Phys. B, 2025, 34(4): 045202.
[12] Molecular dynamics simulations of collision cascades in polycrystalline tungsten
Lixia Liu(刘丽霞), Mingxuan Jiang(蒋明璇), Ning Gao(高宁), Yangchun Chen(陈阳春), Wangyu Hu(胡望宇), and Hiuqiu Deng(邓辉球). Chin. Phys. B, 2025, 34(4): 046103.
[13] Effect of copper/tungsten heterophase interface on radiation resistance: Insights from atomistic simulations
Wen Chen(陈文), Min Li(李敏), Bao-Qin Fu(付宝勤), Tun Chen(陈暾), Jie-Chao Cui(崔节超), and Qing Hou(侯氢). Chin. Phys. B, 2025, 34(4): 046108.
[14] Atomic origin of minor alloying element effect on glass forming ability of metallic glass
Shan Zhang(张珊), Qingan Li(李庆安), Yong Yang(杨勇), and Pengfei Guan(管鹏飞). Chin. Phys. B, 2025, 34(3): 036105.
[15] Structural and transport properties of (Mg,Fe)SiO3 at high temperature and high pressure
Shu Huang(黄澍), Zhiyang Xiang(向志洋), Shi He(何适), Luhan Yin(尹路寒), Shihe Zhang(张时赫), Chen Chen(陈晨), Kaihua He(何开华), and Cheng Lu(卢成). Chin. Phys. B, 2025, 34(3): 036102.
No Suggested Reading articles found!