Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(5): 054219    DOI: 10.1088/1674-1056/27/5/054219
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

An analytical variational method for the biased quantum Rabi model in the ultra-strong coupling regime

Bin-Bin Mao(毛斌斌)1, Maoxin Liu(刘卯鑫)2, Wei Wu(吴威)2, Liangsheng Li(李粮生)3, Zu-Jian Ying(应祖建)4, Hong-Gang Luo(罗洪刚)1,2
1 Center of Interdisciplinary Studies & Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China;
2 Beijing Computational Science Research Center, Beijing 100193, China;
3 Science and Technology on Electromagnetic Scattering Laboratory, Beijing 100854, China;
4 CNR-SPIN, I-84084 Fisciano(Salerno), Italy and Dipartimento di Fisica "E. R. Caianiello," Universito di Salerno, I-84084 Fisciano(Salerno), Italy
Abstract  

An analytical variational method for the ground state of the biased quantum Rabi model in the ultra-strong coupling regime is presented. This analytical variational method can be obtained by a unitary transformation or alternatively by assuming the form of the ground state wave function. The key of the method is to introduce a variational parameter λ, which can be determined by minimizing the energy functional. Using this method, we calculate the physical observables with high accuracy in comparison with the numerical exact ones. Our method evidently improves over the widely used general rotating-wave approximation (GRWA) in both qualitative and quantitative aspects.

Keywords:  ultra-strong coupling      biased quantum Rabi model      analytical variational method  
Received:  17 December 2017      Revised:  19 February 2018      Accepted manuscript online: 
PACS:  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  42.50.Hz (Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)  
  03.65.Ge (Solutions of wave equations: bound states)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos.11674139,11604009,and 11704025),the Program for Changjiang Scholars and Innovative Research Team in University,China (Grant No.IRT-16R35),and the Fundamental Research Funds for the Central Universities,China.ZJY also acknowledges the financial support of the Future and Emerging Technologies (FET) programme within the Seventh Framework Programme for Research of the European Commission,under FET-Open Grant No.618083(CNTQC).

Corresponding Authors:  Hong-Gang Luo     E-mail:  luohg@lzu.edu.cn

Cite this article: 

Bin-Bin Mao(毛斌斌), Maoxin Liu(刘卯鑫), Wei Wu(吴威), Liangsheng Li(李粮生), Zu-Jian Ying(应祖建), Hong-Gang Luo(罗洪刚) An analytical variational method for the biased quantum Rabi model in the ultra-strong coupling regime 2018 Chin. Phys. B 27 054219

[10] Yoshihara F, Fuse T, Ashhab S, Kakuyanagi K, Saito S and Semba K 2017 Nat. Phys. 13 44
[1] Rabi I I 1936 Phys. Rev. 49 324
[11] Chen Z, Wang Y, Li T, Tian L, Qiu Y, Inomata K, Yoshihara F, Han S, Nori F, Tsai J S and You J Q 2017 Phys. Rev. A 96 012325
[2] Rabi I I 1937 Phys. Rev. 51 652
[12] Braak D 2011 Phys. Rev. Lett. 107 100401
[3] Walther H, Varcoe B, Englert B and Becker T 2006 Rep. Prog. Phys. 69 1325
[13] Larson J 2012 Phys. Rev. Lett. 108 033601
[4] Raimond J M, Brune M and Haroche S 2001 Rev. Mod. Phys. 73 565
[14] Wang Y M and Du G and Liang J Q 2012 Chin. Phys. B 21 044207
[5] Holstein T 1959 Ann. Phys. 8 325
[15] Ying Z J, Liu M, Luo H G, Lin H Q and You J Q 2015 Phys. Rev. A 92 053823
[6] Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Nature 431 162
[16] Liu M, Ying Z J, An J H, Luo H G and Lin H Q 2017 J. Phys. A:Math. Theor. 50 084003
[7] Wallraff A, Schuster D I, Blais A, Frunzio L, Majer J, Devoret M H, Girvin S M and Schoelkopf R J 2005 Phys. Rev. Lett. 95 060501
[17] Cong L, Sun X M, Liu M, Ying Z J and Luo H G 2017 Phys. Rev. A 95 063803
[8] Puebla R, Hwang M J, Casanova J and Plenio M B 2017 Phys. Rev. Lett. 118 073001
[18] Hwang M J, Puebla R and Plenio M B 2015 Phys. Rev. Lett. 115 180404
[9] Forn-Díaz P, García-Ripoll J J, Peropadre B, Orgiazzi J L, Yurtalan M A, Belyansky R, Wilson C M and Lupascu A 2017 Nat. Phys. 13 39
[19] Hwang M J and Plenio M B 2016 Phys. Rev. Lett. 117 123602
[10] Yoshihara F, Fuse T, Ashhab S, Kakuyanagi K, Saito S and Semba K 2017 Nat. Phys. 13 44
[20] Liu M, Chesi S, Ying Z J, Chen X, Luo H G and Lin H Q 2017 Phys. Rev. Lett. 119 220601
[11] Chen Z, Wang Y, Li T, Tian L, Qiu Y, Inomata K, Yoshihara F, Han S, Nori F, Tsai J S and You J Q 2017 Phys. Rev. A 96 012325
[21] Xie Q T, Cui S, Cao J P, Amico L and Fan H 2014 Phys. Rev. X 4 021046
[12] Braak D 2011 Phys. Rev. Lett. 107 100401
[22] Wolf F A, Kollar M and Braak D 2012 Phys. Rev. A 85 053817
[13] Larson J 2012 Phys. Rev. Lett. 108 033601
[23] Chen Q H, Wang C, He S, Liu T and Wang K L 2012 Phys. Rev. A 86 023822
[14] Wang Y M and Du G and Liang J Q 2012 Chin. Phys. B 21 044207
[24] Batchelor M T and Zhou H Q 2015 Phys. Rev. A 91 053808
[15] Ying Z J, Liu M, Luo H G, Lin H Q and You J Q 2015 Phys. Rev. A 92 053823
[25] Batchelor M T, Li Z M and Zhou H Q, 2016 J. Phys. A:Math. Theor. 49 01LT01
[16] Liu M, Ying Z J, An J H, Luo H G and Lin H Q 2017 J. Phys. A:Math. Theor. 50 084003
[26] Forn-Díaz P, Lisenfeld J, Marcos D, García-Ripoll J J, Solano E, Harmans C J P M and Mooij J E 2010 Phys. Rev. Lett. 105 237001
[17] Cong L, Sun X M, Liu M, Ying Z J and Luo H G 2017 Phys. Rev. A 95 063803
[27] Irish E K 2007 Phys. Rev. Lett. 99 173601
[18] Hwang M J, Puebla R and Plenio M B 2015 Phys. Rev. Lett. 115 180404
[28] Zhang Y, Chen G, Yu L, Liang Q, Liang J Q and Jia S 2011 Phys. Rev. A 83 065802
[19] Hwang M J and Plenio M B 2016 Phys. Rev. Lett. 117 123602
[29] Yu L, Zhu S, Liang Q, Chen G and Jia S 2012 Phys. Rev. A 86 015803
[20] Liu M, Chesi S, Ying Z J, Chen X, Luo H G and Lin H Q 2017 Phys. Rev. Lett. 119 220601
[30] Zhang Y Y, Chen Q H and Zhao Y 2013 Phys. Rev. A 87033827
[21] Xie Q T, Cui S, Cao J P, Amico L and Fan H 2014 Phys. Rev. X 4 021046
[31] Zhang Y Y, Chen Q H and Zhu S Y 2013 Chin. Phys. Lett. 30 114203
[22] Wolf F A, Kollar M and Braak D 2012 Phys. Rev. A 85 053817
[32] He S and Zhang Y Y and Chen Q H and Ren X Z and Liu T and Wang K L 2013 Chin. Phys. B 22 064205
[23] Chen Q H, Wang C, He S, Liu T and Wang K L 2012 Phys. Rev. A 86 023822
[33] Dong K 2016 Chin. Phys. B 25 124202
[24] Batchelor M T and Zhou H Q 2015 Phys. Rev. A 91 053808
[34] Liu M, Ying Z J, An J H and Luo H G 2015 New J. Phys. 17 043001
[25] Batchelor M T, Li Z M and Zhou H Q, 2016 J. Phys. A:Math. Theor. 49 01LT01
[35] Zhang Y Y and Chen Q H 2015 Phys. Rev. A 91 013814
[36] Zhang Y Y 2016 Phys. Rev. A 94 063824
[26] Forn-Díaz P, Lisenfeld J, Marcos D, García-Ripoll J J, Solano E, Harmans C J P M and Mooij J E 2010 Phys. Rev. Lett. 105 237001
[37] Zhang Y Y, Chen X Y, He S and Chen Q H 2016 Phys. Rev. A 94 012317
[27] Irish E K 2007 Phys. Rev. Lett. 99 173601
[38] Liu N, Li J and Liang J Q 2013 Phys. Rev. A 87 053623
[28] Zhang Y, Chen G, Yu L, Liang Q, Liang J Q and Jia S 2011 Phys. Rev. A 83 065802
[39] Wang Z H, Li Y, Zhou D L, Sun C P and Zhang P 2012 Phys. Rev. A 86 023824
[40] Gan C J and Zheng H 2010 Eur. Phys. J. D 59 473
[29] Yu L, Zhu S, Liang Q, Chen G and Jia S 2012 Phys. Rev. A 86 015803
[41] Yan Y, Lü Z and Zheng H 2015 Phys. Rev. A 91 053834
[30] Zhang Y Y, Chen Q H and Zhao Y 2013 Phys. Rev. A 87033827
[42] Mao L, Liu Y and Zhang Y 2016 Phys. Rev. A 93 052305
[31] Zhang Y Y, Chen Q H and Zhu S Y 2013 Chin. Phys. Lett. 30 114203
[43] Zhong H, Xie Q, Guan X, Batchelor M T, Gao K and Lee C 2014 J. Phys. A:Math. Theor. 47 045301
[32] He S and Zhang Y Y and Chen Q H and Ren X Z and Liu T and Wang K L 2013 Chin. Phys. B 22 064205
[44] Xie Q, Zhong H, Batchelor M T and Lee C 2017 J. Phys. A:Math. Theor. 50 113001
[33] Dong K 2016 Chin. Phys. B 25 124202
[45] Li Z M and Batchelor M T 2015 J. Phys. A:Math. Theor. 48 454005
[34] Liu M, Ying Z J, An J H and Luo H G 2015 New J. Phys. 17 043001
[46] Li Z M and Batchelor M T 2016 J. Phys. A:Math. Theor. 49 369401
[35] Zhang Y Y and Chen Q H 2015 Phys. Rev. A 91 013814
[47] Irish E K, Gea-Banacloche J, Martin I and Schwab K C 2005 Phys. Rev. B 72 195410
[36] Zhang Y Y 2016 Phys. Rev. A 94 063824
[37] Zhang Y Y, Chen X Y, He S and Chen Q H 2016 Phys. Rev. A 94 012317
[38] Liu N, Li J and Liang J Q 2013 Phys. Rev. A 87 053623
[39] Wang Z H, Li Y, Zhou D L, Sun C P and Zhang P 2012 Phys. Rev. A 86 023824
[40] Gan C J and Zheng H 2010 Eur. Phys. J. D 59 473
[41] Yan Y, Lü Z and Zheng H 2015 Phys. Rev. A 91 053834
[42] Mao L, Liu Y and Zhang Y 2016 Phys. Rev. A 93 052305
[43] Zhong H, Xie Q, Guan X, Batchelor M T, Gao K and Lee C 2014 J. Phys. A:Math. Theor. 47 045301
[44] Xie Q, Zhong H, Batchelor M T and Lee C 2017 J. Phys. A:Math. Theor. 50 113001
[45] Li Z M and Batchelor M T 2015 J. Phys. A:Math. Theor. 48 454005
[46] Li Z M and Batchelor M T 2016 J. Phys. A:Math. Theor. 49 369401
[47] Irish E K, Gea-Banacloche J, Martin I and Schwab K C 2005 Phys. Rev. B 72 195410
[1] Dynamics of two arbitrary qubits strongly coupled to a quantum oscillator
Kun Dong(董锟). Chin. Phys. B, 2016, 25(12): 124202.
[2] Evolution of entanglement between qubits ultra-strongly coupling to a quantum oscillator
Ma Yue (马悦), Dong Kun (董锟), Tian Gui-Hua (田贵花). Chin. Phys. B, 2014, 23(9): 094204.
No Suggested Reading articles found!