Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(11): 116301    DOI: 10.1088/1674-1056/ae0432
SPECIAL TOPIC — Heat conduction and its related interdisciplinary areas Prev   Next  

Finite-size effects on phonon-mediated thermal transport across Si–Ge interfaces: Spectral analysis and parameter optimization for molecular dynamics simulations

Zhicong Wei(魏志聪)1, Haoqiang Li(李浩强)1, Jianlian Huang(黄建廉)1, Weikuang Li(李唯宽)1, Yijuan Li(李艺娟)1, Yajuan Cheng(程亚娟)2,†, and Shiyun Xiong(熊世云)1,‡
1 Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China;
2 School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
Abstract  The interfacial thermal resistance (ITR) at material interfaces has emerged as a critical factor in the thermal management of micro/nanoelectronic devices and composite materials. Using non-equilibrium molecular dynamics simulations, we systematically investigate how simulation parameters affect the calculated ITR in Si/Ge heterojunctions. Our results demonstrate that the ITR decreases with increasing system length $L_{\rm sys}$ and thermal bath length $L_{\rm bath}$. We identify linear relationships between ITR and the inverse of both $L_{\rm sys}$ and $L_{\rm bath}$, enabling reliable extrapolation to infinite-system values. While the thermostat coupling constant $\tau$ shows a negligible influence on ITR, excessively large values ($\tau > 5$ ps) compromise temperature control accuracy. Spectral analysis reveals that these size effects primarily originate from mid-to-low-frequency phonons ($< 6$ THz), whose long mean free paths make their transport particularly sensitive to system dimensions. This work establishes fundamental guidelines for parameter selection in interfacial thermal transport simulations, while providing new insights into phonon—interface interactions. The findings offer valuable implications for thermal design in high-power devices and composite materials, where accurate ITR prediction is crucial for performance optimization.
Keywords:  non-equilibrium molecular dynamics      phonons      interfacial thermal resistance  
Received:  28 June 2025      Revised:  20 August 2025      Accepted manuscript online:  08 September 2025
PACS:  63.20.-e (Phonons in crystal lattices)  
  87.10.Tf (Molecular dynamics simulation)  
  64.60.-i (General studies of phase transitions)  
  87.15.ap (Molecular dynamics simulation)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 12174276 and 12304059) and the Basic and Applied Basic Research Foundation of Guangdong Province (Grant Nos. 2024A1515010521, 2024A1515012635, and 2022A1515110572). The Center of Campus Network and Modern Educational Technology of Guangdong University of Technology is acknowledged for providing computational resources and technical support for this work.
Corresponding Authors:  Yajuan Cheng, Shiyun Xiong     E-mail:  yajuancheng@gzhu.edu.cn;syxiong@gdut.edu.cn

Cite this article: 

Zhicong Wei(魏志聪), Haoqiang Li(李浩强), Jianlian Huang(黄建廉), Weikuang Li(李唯宽), Yijuan Li(李艺娟), Yajuan Cheng(程亚娟), and Shiyun Xiong(熊世云) Finite-size effects on phonon-mediated thermal transport across Si–Ge interfaces: Spectral analysis and parameter optimization for molecular dynamics simulations 2025 Chin. Phys. B 34 116301

[1] Cui Y, Li M and Hu Y J 2019 J. Mater. Chem. C 8 10568
[2] Ravichandran V, Chandrashekar A, Prabhu T N and Varrla E 2024 ACS Appl. Mater. Interfaces 16 34367
[3] Saadah M, Hernandez E and Balandin A 2017 Appl. Sci. 7 589
[4] Zhu P, Xia Y X, Zhang Q, Liang X, Gou H S, Shil’ko S V andWu G H 2024 J. Mater. Sci. 59 9814
[5] Wu Y J, Yagi T and Xu Y 2021 Int. J. Heat Mass Transfer. 180 121766
[6] Cao Z Q, Yang X Y, Yang J J, Huang X Y and Ni Y X 2024 Int. J. Heat Mass Transfer. 238 126493
[7] Liu C Q, Yang J W, Li Y F, Fu J, Yu W and Xie H Q 2024 Surf. Interf. 47 104204
[8] Ejaz K M, Ming A M, Sun C and Yong-Hyun Y K 2025 FlatChem 51 100846
[9] Yang H Y, Shen Y J, Li L, Pan Y C and Yang P 2023 Appl. Therm. Eng. 238 121913
[10] Auriault J L and Ene H I 1994 Int. J. Heat Mass Transfer. 37 2885
[11] Hill R F and Supancic P H 2005 J. Asian Ceram. Soc. 87 1831
[12] Torii D O and Taku I K 2009 J. Heat Transfer 132 012402
[13] Gohda Y 2021 Sci. Technol. Adv. Mater. 22 113
[14] Leonard D N, Dyck O, Poplawsky J D, More K L, Edge L F, Jackson C A, Pritchett E J and Deelman P W 2016 Microsc. Microanal. 22 1502
[15] Somarathna C, Samaraweera N, Jayasekara S and Perera K 2023 Phys. Scr. 98 095405
[16] Giri A, Gaskins J T, Donovan B F, Szwejkowski C, Warzoha R J, Rodriguez M A, Ihlefeld J and Hopkins P E 2015 J. Appl. Phys. 117 105105
[17] Zhang X W, Xu T Q, Shi R C, Han B, Liu F C, Liu Z T, Gao X Y, Du J L, Wang Y and Gao P 2024 Nano Lett. 24 13200
[18] Li X, Han J C and Lee S 2023 Mater. Today Phys. 34 101063
[19] Lu Z X, Shi J J and Ruan X L 2019 J. Appl. Phys. 125 085107
[20] Rauscher P M, O ttinger H C and De Pablo J J 2022 Proc. Natl. Acad. Sci. USA 119 e2121405119
[21] Keesom W H and Keesom A P 1936 Physica 3 359
[22] Kapitza P L 1941 Phys. Rev. 60 354
[23] Ge Z B, Cahill D G and Braun P V 2006 Phys. Rev. Lett. 96 186101
[24] Schmidt A J, Cheaito R and Chiesa M 2009 Rev. Sci. Instrum. 80 094901
[25] Regner K T, Sellan D P, Su Z H, Amon C H, Mcgaughey A J H and Malen J A 2013 Nat. Commun. 4 1640
[26] Regner K T, Majumdar S and Malen J A 2013 Rev. Sci. Instrum. 84 064901
[27] Grosse K L, Bae M H, Lian F F, Pop E and King W P 2011 Nat. Nanotechnol. 6 287
[28] Fletcher P C, Lee B and King W P 2011 Nanotechnology 23 035401
[29] Chen J, Xu X F, Zhou J and Li B 2022 Rev. Mod. Phys. 94 025002
[30] Swartz E T and Pohl R O 1989 Rev. Mod. Phys. 61 605
[31] Macgowan D and Evans D J 1986 Phys. Rev. A 117 414
[32] Wang J S, Wang J and Zeng N 2006 Phys. Rev. B 74 033408
[33] Zhang W S, Fisher T and Mingo N 2007 Numer. Heat Transfer. B 51 333
[34] Wang J S, Zeng N, Wang J and Gan C K 2007 Phys. Rev. E 75 061128
[35] Liu W, Feng Y, Li R, Bai C and Niu B 2024 Comput. Phys. Commun. 299 109157
[36] Young M 1989 Phys. Rev. B 40 3685
[37] Yang H A and Cao B Y 2023 J. Appl. Phys. 134 155302
[38] Guo Y Y, Zhang Z W, Bescond M, Xiong S Y, Nomura M and Volz S 2021 Phys. Rev. B 103 174306
[39] Maiti A, Mahan G D and Pantelides S T 1997 Solid State Commun. 102 517
[40] Cahill D G, Braun P V, Chen G, Clarke D R, Fan S H, Goodson K E, Keblinski P, King W P, Mahan G D, Majumdar A, Maris H J, Phillpot S R, Pop E and Shi L 2014 Appl. Phys. Rev. 1 011305
[41] Takuru M, Takuma H, Takuma S and Junichiro S 2014 Appl. Phys. Express 7 121801
[42] Wang Z Y 2020 Mater. Today Commun. 22 100822
[43] Stanley C M 2023 Physica Status Solidi B 260 2300095
[44] Liang Z and Keblinski P 2014 Phys. Rev. B 90 075411
[45] Chen J, Zhang G and Li B 2010 J. Phys. Soc. Jpn. 79 074604
[46] Tersoff J 1990 Phys. Rev. B 41 3248
[47] Lindsay L and Broido D A 2010 Phys. Rev. B 81 205441
[48] Huang Y, Tan C, Wan J, Zhang L and Rong Y 2025 J. Mol. Model. 31 63
[49] Davoodi J, Soleymani M and Sabet H A 2018 Silicon 10 731
[50] Li X and Yang R 2012 Phys. Rev. B 86 054305
[51] Dhar A 2008 Adv. Phys. 57 457
[52] Hoover W G 1985 Phys. Rev. A 31 1695
[53] Nosé S 1984 J. Chem. Phys. 81 511
[54] Sääskilahti K, Oksanen J, Volz S and Tulkki J 2015 Phys. Rev. B 91 115426
[55] Hu Y, Xu J X, Ruan X L and Bao H 2024 Nat. Commun. 15 3304
[56] Stillinger F and Weber T 1985 Phys. Rev. B 31 5262
[57] Li Z, Xiong S Y, Sievers C, Hu Y, Fan Z Y, Wei N, Bao H, Chen S D, Donadio D and Ala-Nissila T 2019 J. Chem. Phys. 151 234105
[58] Liang Z and Hu M 2018 J. Appl. Phys. 123 191101
[1] Coupling between phonon and short-range spin correlations in frustrated spinel LiFeCr4O8
Xiang Li(李想), Wei Ren(任玮), Bo Zhang(张博), Yan-Zhen Cai(蔡焱桢), Zhi-Wei Li(李志伟), Jianting Ji(籍建葶), Feng Jin(金峰), Anmin Zhang(张安民), and Qingming Zhang(张清明). Chin. Phys. B, 2025, 34(11): 117801.
[2] Identifying the effect of photo-generated carriers on the phonons in rutile TiO2 through Raman spectroscopy
Zheng Wang(王征), Min Liao(廖敏), Guihua Wang(王桂花), and Meng Zhang(张梦). Chin. Phys. B, 2024, 33(11): 117802.
[3] Impeded thermal transport in aperiodic BN/C nanotube superlattices due to phonon Anderson localization
Luyi Sun(孙路易), Fangyuan Zhai(翟方园), Zengqiang Cao(曹增强), Xiaoyu Huang(黄晓宇), Chunsheng Guo(郭春生), Hongyan Wang(王红艳), and Yuxiang Ni(倪宇翔). Chin. Phys. B, 2023, 32(5): 056301.
[4] Lattice thermal conductivity switching via structural phase transition in ferromagnetic VI3
Chao Wu(吴超) and Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(5): 056502.
[5] Thermal rectification induced by Wenzel-Cassie wetting state transition on nano-structured solid-liquid interfaces
Haiyang Li(李海洋), Jun Wang(王军), and Guodong Xia(夏国栋). Chin. Phys. B, 2023, 32(5): 054401.
[6] Straight and twisted Weyl nodal line phonons in Ho2CF2 material
Xin-Yue Kang(康鑫越), Jin-Yang Li(李金洋), and Si Li(李思). Chin. Phys. B, 2023, 32(11): 116301.
[7] Isotropic negative thermal expansion and its mechanism in tetracyanidoborate salt CuB(CN)4
Chunyan Wang(王春艳), Qilong Gao(高其龙), Andrea Sanson, and Yu Jia(贾瑜). Chin. Phys. B, 2022, 31(6): 066501.
[8] Impact of counter-rotating-wave term on quantum heat transfer and phonon statistics in nonequilibrium qubit-phonon hybrid system
Chen Wang(王晨), Lu-Qin Wang(王鲁钦), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(3): 030506.
[9] Excellent thermoelectric performance predicted in Sb2Te with natural superlattice structure
Pei Zhang(张培), Tao Ouyang(欧阳滔), Chao Tang(唐超), Chaoyu He(何朝宇), Jin Li(李金), Chunxiao Zhang(张春小), and Jianxin Zhong(钟建新). Chin. Phys. B, 2021, 30(12): 128401.
[10] A polaron theory of quantum thermal transistor in nonequilibrium three-level systems
Chen Wang(王晨), Da-Zhi Xu(徐大智). Chin. Phys. B, 2020, 29(8): 080504.
[11] Topology of triple-point metals
Georg W. Winkler, Sobhit Singh, Alexey A. Soluyanov. Chin. Phys. B, 2019, 28(7): 077303.
[12] Unifying quantum heat transfer and superradiant signature in a nonequilibrium collective-qubit system:A polaron-transformed Redfield approach
Xu-Min Chen(陈许敏), Chen Wang(王晨). Chin. Phys. B, 2019, 28(5): 050502.
[13] Modulated thermal transport for flexural and in-plane phonons in double-stub graphene nanoribbons
Chang-Ning Pan(潘长宁), Meng-Qiu Long(龙孟秋), Jun He(何军). Chin. Phys. B, 2018, 27(8): 088101.
[14] Thermal transport in semiconductor nanostructures, graphene, and related two-dimensional materials
Alexandr I. Cocemasov, Calina I. Isacova, Denis L. Nika. Chin. Phys. B, 2018, 27(5): 056301.
[15] Thermal transport in phosphorene and phosphorene-based materials: A review on numerical studies
Yang Hong(洪扬), Jingchao Zhang(张景超), Xiao Cheng Zeng(曾晓成). Chin. Phys. B, 2018, 27(3): 036501.
No Suggested Reading articles found!