Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(10): 107801    DOI: 10.1088/1674-1056/adfa7b
INVITED REVIEW Prev   Next  

Time-resolved x-ray scattering study on quantum materials

Xinyi Jiang(蒋心怡), Qingzheng Qiu(仇清正), and Yingying Peng(彭莹莹)†
International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
Abstract  Quantum materials have attracted a great deal of attention because of their rich landscape of electronic structures, topological phases, strong correlation effects, and exotic orders. These systems provide a fertile platform for the exploration of novel quantum phenomena and materials applications. Particularly exciting is the exploration of nonequilibrium dynamics in quantum materials, which has significant research and potential application values. Pump-probe techniques play a key role in revealing the dynamics of quantum materials on remarkably short timescales, providing an attractive yet challenging avenue of research. In this context, time-resolved x-ray as an emerging probe exhibits high time resolution, momentum resolution, and substantial momentum coverage. It can reveal unprecedented transient states, distinguish between entangled ordered states, and has a compelling potential to probe ultrafast dynamics in a wide variety of quantum materials. Despite its unique advantages, time-resolved x-ray scattering still faces several technological and methodological challenges. In this review, we highlight recent advances focusing on the use of time-resolved x-ray scattering to probe dynamic processes in quantum materials. We discuss representative examples across structural, electronic, magnetic, and lattice degrees of freedom, and outline promising directions for future research in this rapidly evolving field.
Keywords:  time-resolved x-ray      quantum materials      pump-probe technique      non-equilibrium dynamics  
Received:  06 June 2025      Revised:  29 July 2025      Accepted manuscript online:  12 August 2025
PACS:  78.47.J- (Ultrafast spectroscopy (<1 psec))  
  78.47.je (Time resolved light scattering spectroscopy)  
  61.05.C- (X-ray diffraction and scattering)  
Fund: Y.Y.P. is grateful for financial support from the National Key R&D Program of China (Grants Nos. 2024YFA1408702 and 2021YFA1401903), Beijing Natural Science Foundation (Grant No. JQ24001), and the National Natural Science Foundation of China (Grant No. 12374143).
Corresponding Authors:  Yingying Peng     E-mail:  yingying.peng@pku.edu.cn

Cite this article: 

Xinyi Jiang(蒋心怡), Qingzheng Qiu(仇清正), and Yingying Peng(彭莹莹) Time-resolved x-ray scattering study on quantum materials 2025 Chin. Phys. B 34 107801

[1] Keimer B and Moore J 2017 Nat. Phys. 13 1045
[2] Zhou X, Lee W, Imada M, et al. 2021 Nat. Rev. Phys. 3 462
[3] Qi X L, Zhang S C, et al. 2011 Rev. Mod. Phys. 83 1057
[4] Sie E, Nyby C, Pemmaraju C, et al. 2019 Nature 565 61
[5] Armitage N P, Mele E J, Vishwanath A, et al. 2018 Rev. Mod. Phys. 90 015001
[6] Burch K, Mandrus D, Park J, et al. 2018 Nature 563 47
[7] Wu J, Liu F, Sasase M, et al. 2019 Sci. Adv. 5 eaax9989
[8] Ahn C, Cavalleri A, Georges A, et al. 2021 Nat. Mater. 20 1462
[9] Buzzi M, Först M, Mankowsky R, et al. 2018 Nat. Rev. Mater. 3 299
[10] European XFEL 2023 Facility comparison 2023-10-01
[11] Lindenberg A M, Kang I, Johnson S L, et al. 2000 Phys. Rev. Lett. 84 111
[12] Tsuyama T, Chakraverty S, Macke S, et al. 2016 Phys. Rev. Lett. 116 256402
[13] Zong A, Dolgirev P E, Kogar A, et al. 2019 Phys. Rev. Lett. 123 097601
[14] Chuang Y D, Lee W S, Kung Y F, et al. 2013 Phys. Rev. Lett. 110 127404
[15] Murnane M M, Kapteyn H C, Rosen M D, et al. 1991 Science 251 531
[16] Bostedt C, Boutet S, Fritz D M, et al. 2016 Rev. Mod. Phys. 88 015007
[17] Dunne M 2018 Nat. Rev. Mater. 3 290
[18] Cartlidge E 2016 Science 354 22
[19] Cornacchia M 1998 Linac coherent light source (LCLS) design study report (No. SLAC-R-521), SLAC National Accelerator Lab, Menlo Park, CA (United States)
[20] Bao C, Tang P, Sun D, et al. 1998 Nature Structural & Molecular Biology 5 657
[21] Altarelli M 2011 Nucl. Instrum. Meth. Phys. Res. Sect. B 269 2845
[22] Tschentscher T, Bressler C, Grünert J, et al. 2017 Applied Sciences 7 592
[23] Oloff L P, Oura M, Chainani A, et al. 2016 Hard X-ray Photoelectron Spectroscopy (HAXPES) ed Woicik J (Cham: Springer) pp. 555-568
[24] Ingold G, Abela R, Arrell C, et al. 2019 Journal of Synchrotron Radiation 26 874
[25] Jang H, Kim H D, Kim M, Park S H, Kwon S, Lee J Y, Park S Y, Park G, Kim S, Hyun H, et al. 2020 Rev. Sci. Instrum. 91 083904
[26] Schlappa J, Ghiringhelli G, Van Kuiken B E, et al. 2025 Journal of Synchrotron Radiation 32 29
[27] Zhang H, Pincelli T, Jozwiak C, Kondo T, Ernstorfer R, Sato T and Zhou S 2022 Nature Reviews Methods Primers 2 54
[28] Boschini F, Zonno M and Damascelli A 2024 Rev. Mod. Phys. 96 015003
[29] Wang X and Li Y 2018 Chin. Phys. B 27 076102
[30] Filippetto D, Musumeci P, Li R, Siwick B J, Otto M, Centurion M and Nunes J 2022 Rev. Mod. Phys. 94 045004
[31] Bao C, Tang P, Sun D, et al. 2022 Nat. Rev. Phys. 4 33
[32] Sobota J A, He Y, Shen Z X, et al. 2021 Rev. Mod. Phys. 93 025006
[33] Pokharel A, Grigorev V, Mejas A, et al. 2022 Commun. Phys. 5 141
[34] Claudio Giannetti Massimo Capone D F, et al. 2016 Adv. Phys. 65 58
[35] Kogar A, Zong A, Dolgirev P E, et al. 2020 Nat. Phys. 16 159
[36] Filippetto D, Musumeci P, Li R K, et al. 2022 Rev. Mod. Phys. 94 045004
[37] Ament L J, Van Veenendaal M, Devereaux T P, et al. 2011 Rev. Mod. Phys. 83 705
[38] Joy P and Vasudevan S 1992 Phys. Rev. B 46 5425
[39] Burch K S, Mandrus D, Park J G, et al. 2018 Nature 563 47
[40] Li Y, Chen Z, Wang J, et al. 2023 npj 2D Mater. Appl. 7 39
[41] Gong C, Li L, Li Z, et al. 2017 Nature 546 265
[42] OaHara D J, Zhu T, Trout A H, et al. 2018 Nano Lett. 18 3125
[43] Fei Z, Zhao W, Palomaki T, et al. 2018 Nature 560 336
[44] Huang Y, Yang S, Teitelbaum S, et al. 2022 Phys. Rev. X 12 011029
[45] Zhou F, Hwangbo K, Zhang Q, et al. 2022 Nat. Commun. 13 6598
[46] Soranzio D, Savoini M, Beaud P, et al. 2022 npj 2D Mater. Appl. 6 71
[47] Li C W, Hong J, May A F, et al. 2015 Nat. Phys. 11 1063
[48] Loa I, Husband R, Downie R, et al. 2015 J. Phys. Condens. Matter 27 072202
[49] Sobota J A, Teitelbaum S W, Huang Y, et al. 2023 Phys. Rev. B 107 014305
[50] Thomsen C, Grahn H T, Maris H J, et al. 1986 Phys. Rev. B 34 4129
[51] Sokolowski-Tinten K, Blome C, Blums J, et al. 2003 Nature 422 287
[52] Moore R G, LeeWS, Kirchman P S, et al. 2016 Phys. Rev. B 93 024304
[53] Trigo M, Giraldo-Gallo P, Kozina M E, et al. 2019 Phys. Rev. B 99 104111
[54] Zeiger H, Vidal J, Cheng T, et al. 1992 Phys. Rev. B 45 768
[55] Lee M C, Sirica N, Teitelbaum S, et al. 2022 Phys. Rev. Lett. 128 155301
[56] Wandel S, Boschini F, da Silva Neto E, et al. 2022 Science 376 860
[57] Zhou Y, Lu P, Du Y, et al. 2016 Phys. Rev. Lett. 117 146402
[58] Yang L, Liu Z, Sun Y, et al. 2015 Nat. Phys. 11 728
[59] Mathur N, Grosche F, Julian S, et al. 1998 Nature 394 39
[60] Demler E, Sachdev S, Zhang Y, et al. 2001 Phys. Rev. Lett. 87 067202
[61] Ghiringhelli G, Le Tacon M, Minola M, et al. 2012 Science 337 821
[62] Wen J, Huang H, Lee S, et al. 2019 Nat. Commun. 10 3269
[63] Peng Y, Fumagalli R, Ding Y, et al. 2018 Nat. Mater. 17 697
[64] Li Q, Huang H Y, Ren T, et al. 2023 Phys. Rev. Lett. 131 116002
[65] Huang H Y, Singh A, Mou C Y, et al. 2021 Phys. Rev. X 11 041038
[66] Chang J, Blackburn E, Holmes A, et al. 2012 Nat. Phys. 8 871
[67] Li X, Zou C, Ding Y, et al. 2021 Phys. Rev. X 11 011007
[68] Jang H, Song S, Kihara T, et al. 2022 Sci. Adv. 8 eabk0832
[69] Orenstein G, Duncan R A, de la Pena Munoz G A, et al. 2023 arXiv preprint arXiv:2304.00168
[70] Mitrano M, Lee S, Husain A A, et al. 2019 Sci. Adv. 5 eaax3346
[71] Jiang X, Li Q, Qiu Q, et al. 2025 arXiv preprint arXiv:2506.04697
[72] Peng Y, Fumagalli R, Ding Y, et al. 2018 Nat. Mater. 17 697
[73] Ning H, Oh K H, Su Y, et al. 2024 Nat. Commun. 15 7286
[74] Mielke III C, Das D, Yin J X, et al. 2022 Nature 602 245
[75] Nie L, Sun K, Ma W, et al. 2022 Nature 604 59
[76] Lou R, Fedorov A, Yin Q, et al. 2022 Phys. Rev. Lett. 128 036402
[1] Effects of helium ion irradiation and thermal annealing on the optical and structural properties of hexagonal boron nitride
Guan-Lin Liu(刘冠麟), Ji-Lian Xu(徐辑廉), Peng-Tao Jing(景鹏涛), Jing-Jing Shao(邵京京), Xu Guo(郭旭), Yun-Tao Wu(吴韵涛), Feng Qin(覃凤), Zhen Cheng(程祯), Deming Liu(刘德明), Yang Bao(鲍洋), Hai Xu(徐海), Li-Gong Zhang(张立功), Da Zhan(詹达), Jia-Xu Yan(闫家旭), Lei Liu(刘雷), and De-Zhen Shen(申德振). Chin. Phys. B, 2025, 34(5): 057801.
[2] Cryogenic transmission electron microscopy on beam-sensitive materials and quantum science
Gang Wang(王刚) and Jun-Hao Lin(林君浩). Chin. Phys. B, 2024, 33(8): 086801.
[3] In situ observation of the phase transformation kinetics of bismuth during shock release
Jiangtao Li(李江涛), Qiannan Wang(王倩男), Liang Xu(徐亮), Lei Liu(柳雷), Hang Zhang(张航), Sota Takagi, Kouhei Ichiyanagi, Ryo Fukaya, Shunsuke Nozawa, and Jianbo Hu(胡建波). Chin. Phys. B, 2024, 33(4): 046401.
[4] Ultrafast magneto-optical dynamics in nickel (111) single crystal studied by the integration of ultrafast reflectivity and polarimetry probes
Hao Kuang(匡皓), Junxiao Yu(余军潇), Jie Chen(陈洁), H. E. Elsayed-Ali, Runze Li(李润泽), and Peter M. Rentzepis. Chin. Phys. B, 2024, 33(3): 037802.
[5] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[6] Modified Chapman-Enskog expansion: A new way to treat divergent series
Zhen-Su She(佘振苏). Chin. Phys. B, 2017, 26(8): 080501.
[7] Gigahertz longitudinal acoustic phonons originating from ultrafast ligand field transitions in hematite thin films
Xu Yue (徐悦), Jin Zuan-Ming (金钻明), Zhang Zheng-Bing (张郑兵), Zhang Ze-Yu (张泽宇), Lin Xian (林贤), Ma Guo-Hong (马国宏), Cheng Zhen-Xiang (程振祥). Chin. Phys. B, 2014, 23(4): 044206.
[8] Determination of temporal structure of femtosecond laser pulses by means of the laser-induced air plasma
Zhang Nan (张楠), Bao Wen-Xia (包文霞), Yang Jing-Hui (杨景辉), Zhu Xiao-Nong (朱晓农). Chin. Phys. B, 2013, 22(5): 054209.
No Suggested Reading articles found!