ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Gigahertz longitudinal acoustic phonons originating from ultrafast ligand field transitions in hematite thin films |
Xu Yue (徐悦)a, Jin Zuan-Ming (金钻明)a b, Zhang Zheng-Bing (张郑兵)a, Zhang Ze-Yu (张泽宇)a, Lin Xian (林贤)a, Ma Guo-Hong (马国宏)a, Cheng Zhen-Xiang (程振祥)c |
a Laboratory of Ultrafast Photonics, Department of Physics, Shanghai University, Shanghai 200444, China; b Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany; c Institute for Superconductor and Electronic Materials, University of Wollongong, Squires Way, North Wollongong, NSW 2500, Australia |
|
|
Abstract The creation and propagation of longitudinal acoustic phonons (LAPs) in high quality hematite thin films (α-Fe2O3) epitaxially grown on different substrates (BaTiO3, SrTiO3, and LaAlO3) are investigated using the femtosecond pump-probe technique. Transient reflection measurements (ΔR/R) indicate the photo-excited electron dynamics, and the initial decay less than 1 ps and the slow decay of ~ 500 ps are attributed to the electron-LO phonon coupling and electron-hole nonradiative recombination, respectively. LAPs in α-Fe2O3 film can be created by ultrafast excitation of the ligand field state, such as the ligand field transitions under 800-nm excitation as well as the ligand to metal charge-transfer with 400-nm excitation. The strain modulations of the sound velocity and the out-of-plane elastic properties are demonstrated in α-Fe2O3 film on different substrates.
|
Received: 12 June 2013
Revised: 11 August 2013
Accepted manuscript online:
|
PACS:
|
42.50.Md
|
(Optical transient phenomena: quantum beats, photon echo, free-induction decay, dephasings and revivals, optical nutation, and self-induced transparency)
|
|
78.20.hb
|
(Piezo-optical, elasto-optical, acousto-optical, and photoelastic effects)
|
|
78.47.J-
|
(Ultrafast spectroscopy (<1 psec))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11174195). |
Corresponding Authors:
Ma Guo-Hong, Cheng Zhen-Xiang
E-mail: ghma@staff.shu.edu.cn;cheng@uow.edu.au
|
About author: 42.50.Md; 78.20.hb; 78.47.J- |
Cite this article:
Xu Yue (徐悦), Jin Zuan-Ming (金钻明), Zhang Zheng-Bing (张郑兵), Zhang Ze-Yu (张泽宇), Lin Xian (林贤), Ma Guo-Hong (马国宏), Cheng Zhen-Xiang (程振祥) Gigahertz longitudinal acoustic phonons originating from ultrafast ligand field transitions in hematite thin films 2014 Chin. Phys. B 23 044206
|
[1] |
Armstrong M R, Reed E J, Kim K Y, Glownia J H, Howard W M, Piner E L and Roberts J C 2009 Nat. Phys. 5 285
|
[2] |
Akimov A V, Scherbakov A V, Yakovlev D R, Foxon C T and Bayer M 2006 Phys. Rev. Lett. 97 037401
|
[3] |
Hase M, Ishioka K, Demsar J, Ushida K and Kitajima M 2005 Phys. Rev. B 71 184301
|
[4] |
Hong F, Cheng Z X, Zhao H Y, Kimura H and Wang X L 2011 Appl. Phys. Lett. 99 092502
|
[5] |
Xu Y, Jin Z M, Li G F, Zhang Z B, Lin X, Ma G H and Cheng Z X 2012 Acta Phys. Sin. 61 177802 (in Chinese)
|
[6] |
Abal G R, Ney O, Satitkovitchai K and Hubner W 2004 Phys. Rev. Lett. 92 227402
|
[7] |
Takano M, Nasu S, Abe T, Yamamoto K, Endo S, Takeda Y and Goodenough J B 1991 Phys. Rev. Lett. 67 3267
|
[8] |
Yao G X, Lu L H, Gui M F, Zhang X Y, Zheng X F, Ji X H, Zhang H and Cui Z F 2012 Chin. Phys. B 21 107801
|
[9] |
Kimel A V, Kirilyuk A, Usachev P A, Pisarev R V, Balbashov A M and Rasing T 2005 Nature 435 655
|
[10] |
Jiang Q, Kang Y T and Yao D X 2013 Chin. Phys. B 22 087402
|
[11] |
Jin Z M, Xu Y, Zhang Z B, Lin X, Ma G H, Cheng Z X and Wang X L 2012 Appl. Phys. Lett. 101 242902
|
[12] |
Wen H D, Chen P, Cosgriff M P, Walko D A, Lee J H, Adamo C, Schaller R D, Ihlefeld J F, Dufresne E M, Schlom D G, Evans P G, Freeland J W and Li Y L 2013 Phys. Rev. Lett. 110 037601
|
[13] |
Korff C V S, Bargheer M, Kiel M, Zhavoronkov N, Woerner M, Elsaesser T, Vrejoiu I, Hesse D and Alexe M 2007 Phys. Rev. Lett. 98 257601
|
[14] |
Joly A G, Williams J R, Chambers S A, Xiong G, Hess W P and Laman D M 2006 J. Appl. Phys. 99 053521
|
[15] |
Jonathan K L and Allen J B 1987 J. Phys. Chem. 91 5076
|
[16] |
Cherepy N J, Liston D B, Lovejoy J A, Deng H M and Zhang J Z 1998 J. Phys. Chem. B 102 770
|
[17] |
Pendlebury S R, Barroso M, Cowan A J, Sivula K, Tang J, Gratzel M, Klug D and Durrant J R 2011 Chem. Commun. 47 716
|
[18] |
Hashimoto T, Yamada T and Yoko T 1996 J. Appl. Phys. 80 3184
|
[19] |
Chen T Y, Hsia C H, Son H S and Son D H 2007 J. Am. Chem. Soc. 129 10829
|
[20] |
Krasniqi F S, Johnson S L, Beaud P, Kaiser M, Grolimund D and Ingold G 2008 Phys. Rev. B 78 174302
|
[21] |
Jin Z M, Ma H, Li D, Wang L H, Ma G H, Guo F and Chen J 2011 Appl. Phys. B 104 59
|
[22] |
Aramburu J A, Moreno M, Doclo K, Daul C and Barriuso M T 1999 J. Chem. Phys. 110 1497
|
[23] |
Harris D, Loew G H and Komornicki A 1997 J. Phys. Chem. A 101 3959
|
[24] |
Sherman D M 1985 Phys. Chem. Miner. 12 161
|
[25] |
Thomsen C, Grahn H T, Maris H J and Tauc J 1986 Phys. Rev. B 34 4129
|
[26] |
Ruello P, Pezeril T, Avanesyan S, Vaudel G, Gusev V, Infante I C and Dkhil B 2012 Appl. Phys. Lett. 100 212906
|
[27] |
Chen P, Lee N, McGill S, Cheong S W and Musfeldt J L 2012 Phys. Rev. B 85 174413
|
[28] |
Morin F J 1951 Phys. Rev. 83 1005
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|