ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Photon statistical properties of photon-added two-mode squeezed coherent states |
Xu Xue-Fen (许雪芬)a, Wang Shuai (王帅)b, Tang Bin (唐斌)b |
a Department of Basic Course, Wuxi Institute of Technology, Wuxi 214121, China; b School of Mathematics and Physics, Changzhou University, Changzhou 213164, China |
|
|
Abstract We investigate photon statistical properties of the multiple-photon-added two-mode squeezed coherent states (PA-TMSCS). We find that the photon statistical properties are sensitive to the compound phase involved in the TMSCS. Our numerical analyses show that the photon addition can enhance the cross-correlation and anti-bunching effects of the PA-TMSCS. Compared with that of the TMSCS, the photon number distribution of the PA-TMSCS is modulated by a factor that is a monotonically increasing function of the numbers of adding photons to each mode; further, that the photon addition essentially shifts the photon number distribution.
|
Received: 26 March 2013
Revised: 03 June 2013
Accepted manuscript online:
|
PACS:
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174114 and 61107055) and the Natural Science Foundation of Wuxi Institute of Technology of China (Grant No. 401301293). |
Corresponding Authors:
Wang Shuai
E-mail: wangshuai197903@sohu.com
|
About author: 42.50.Dv |
Cite this article:
Xu Xue-Fen (许雪芬), Wang Shuai (王帅), Tang Bin (唐斌) Photon statistical properties of photon-added two-mode squeezed coherent states 2014 Chin. Phys. B 23 024206
|
[1] |
Mandel L and Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press)
|
[2] |
Schleich W, Walls D F and Wheeler J A 1988 Phys. Rev. A 38 1177
|
[3] |
Schleich W and Wheeler J A 1987 Nature 326 574
|
[4] |
Schleich W and Wheeler J A 1987 J. Opt. Soc. Am. B 4 1715
|
[5] |
Agarwal G S and Adam G 1988 Phys. Rev. A 38 750
|
[6] |
Agarwal G S and Adam G 1989 Phys. Rev. A 39 6259
|
[7] |
Chaturvedi S and Srinivasan V 1989 Phys. Rev. A 40 6095
|
[8] |
Kim M S, de Oliveira F A M and Knight P L 1989 Phys. Rev. A 40 2494
|
[9] |
Peřina J and Bajer J 1990 Phys. Rev. A 41 516
|
[10] |
Dutta B, Mukunda N, Simon R and Subramaniam A 1993 J. Opt. Soc. Am. B 10 253
|
[11] |
Dodonov V V, Man’ko O V and Manko V I 1994 Phys. Rev. A 49 2993
|
[12] |
Lee C T 1990 Phys. Rev. A 42 4193
|
[13] |
Caves C M, Zhu C, Milburn G J and Schleich W 1991 Phys. Rev. A 43 3854
|
[14] |
Selvadoray M, Kumar M S and Simon R 1994 Phys. Rev. A 49 4957
|
[15] |
Wang S, Zhang X Y and Fan H Y 2012 Chin. Phys. B 21 054206
|
[16] |
Dell’s Anno F, De Siena S and Illuminati F 2006 Phys. Rep. 428 53
|
[17] |
Wenger J, Tualle-Brouri R and Grangier P 2004 Phys. Rev. Lett. 92 153601
|
[18] |
Nha H and Carmichael H J 2004 Phys. Rev. Lett. 93 020401
|
[19] |
García-Patrón R, Fiurášek J, Cerf N J, Wenger J, Tualle-Brouri R and Grangier Ph 2004 Phys. Rev. Lett. 93 130409
|
[20] |
Takahashi H, Neergaard-Nielsenl J S, Takeuchil M, Takeokal M, Hayasakal K, Furusawa A and Sasakil M 2010 Nat. Photon. 4 178
|
[21] |
Agarwal G S and Tara K 1991 Phys. Rev. A 43 492
|
[22] |
Hu L Y and Fan H Y 2009 Chin. Phys. B 18 4657
|
[23] |
Zhou J, Fan H Y and Song J 2012 Chin. Phys. B 21 070301
|
[24] |
Xu L J, Tan G B, Ma S J and Guo Q 2013 Chin. Phys. B 22 030311
|
[25] |
Wang S, Yuan H C and Xu X F 2013 Eur. Phys. J. D 67 102
|
[26] |
Ourjoumtsev A, Tualle-Brouri R, Laurat J and Grangier Ph 2006 Science 312 83
|
[27] |
Boyd R W, Chan K W and O’Sullivan M N 2007 Science 317 1874
|
[28] |
Zavatta A, Parigi V, Kim M S, Jeong H and Bellini M 2009 Phys. Rev. Lett. 103 140406
|
[29] |
Kim M S 2008 J. Phys. B: At. Mol. Opt. Phys. 41 133001
|
[30] |
Zhang Z X and Fan H Y 1993 Phys. Lett. A 174 206
|
[31] |
Hu L Y, Jia F and Zhang Z M 2012 J. Opt. Soc. Am. B 29 1456
|
[32] |
Meng X G, Wang Z, Fan H Y, Wang J S and Yang Z S 2012 J. Opt. Soc. Am. B 29 1844
|
[33] |
Wang X B, Kwek L C, Liu Y and Oh C H 2001 J. Phys. B: At. Mol. Opt. Phys. 34 1059
|
[34] |
Wang S, Yuan H C and Xu X F 2013 Opt. Commun. 298–299 154
|
[35] |
Wang S, Fan H Y and Hu L Y 2012 J. Opt. Soc. Am. B 29 1020
|
[36] |
Walls D F and Milburn G J 1995 Quantum Optics (Berlin: Springer-Verlag)
|
[37] |
Lai W K, Buzek V and Knight P L 1991 Phys. Rev. A 44 6043
|
[38] |
Zhang W M, Feng D F and Gilmore R 1990 Rev. Mod. Phys. 62 867
|
[39] |
Lee C T 1990 Phys. Rev. A 41 1569
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|