Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 024206    DOI: 10.1088/1674-1056/23/2/024206
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Photon statistical properties of photon-added two-mode squeezed coherent states

Xu Xue-Fen (许雪芬)a, Wang Shuai (王帅)b, Tang Bin (唐斌)b
a Department of Basic Course, Wuxi Institute of Technology, Wuxi 214121, China;
b School of Mathematics and Physics, Changzhou University, Changzhou 213164, China
Abstract  We investigate photon statistical properties of the multiple-photon-added two-mode squeezed coherent states (PA-TMSCS). We find that the photon statistical properties are sensitive to the compound phase involved in the TMSCS. Our numerical analyses show that the photon addition can enhance the cross-correlation and anti-bunching effects of the PA-TMSCS. Compared with that of the TMSCS, the photon number distribution of the PA-TMSCS is modulated by a factor that is a monotonically increasing function of the numbers of adding photons to each mode; further, that the photon addition essentially shifts the photon number distribution.
Keywords:  photon statistical properties      two-mode squeezed coherent state      non-Gaussian operation      photon addition  
Received:  26 March 2013      Revised:  03 June 2013      Accepted manuscript online: 
PACS:  42.50.Dv (Quantum state engineering and measurements)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174114 and 61107055) and the Natural Science Foundation of Wuxi Institute of Technology of China (Grant No. 401301293).
Corresponding Authors:  Wang Shuai     E-mail:  wangshuai197903@sohu.com
About author:  42.50.Dv

Cite this article: 

Xu Xue-Fen (许雪芬), Wang Shuai (王帅), Tang Bin (唐斌) Photon statistical properties of photon-added two-mode squeezed coherent states 2014 Chin. Phys. B 23 024206

[1] Mandel L and Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press)
[2] Schleich W, Walls D F and Wheeler J A 1988 Phys. Rev. A 38 1177
[3] Schleich W and Wheeler J A 1987 Nature 326 574
[4] Schleich W and Wheeler J A 1987 J. Opt. Soc. Am. B 4 1715
[5] Agarwal G S and Adam G 1988 Phys. Rev. A 38 750
[6] Agarwal G S and Adam G 1989 Phys. Rev. A 39 6259
[7] Chaturvedi S and Srinivasan V 1989 Phys. Rev. A 40 6095
[8] Kim M S, de Oliveira F A M and Knight P L 1989 Phys. Rev. A 40 2494
[9] Peřina J and Bajer J 1990 Phys. Rev. A 41 516
[10] Dutta B, Mukunda N, Simon R and Subramaniam A 1993 J. Opt. Soc. Am. B 10 253
[11] Dodonov V V, Man’ko O V and Manko V I 1994 Phys. Rev. A 49 2993
[12] Lee C T 1990 Phys. Rev. A 42 4193
[13] Caves C M, Zhu C, Milburn G J and Schleich W 1991 Phys. Rev. A 43 3854
[14] Selvadoray M, Kumar M S and Simon R 1994 Phys. Rev. A 49 4957
[15] Wang S, Zhang X Y and Fan H Y 2012 Chin. Phys. B 21 054206
[16] Dell’s Anno F, De Siena S and Illuminati F 2006 Phys. Rep. 428 53
[17] Wenger J, Tualle-Brouri R and Grangier P 2004 Phys. Rev. Lett. 92 153601
[18] Nha H and Carmichael H J 2004 Phys. Rev. Lett. 93 020401
[19] García-Patrón R, Fiurášek J, Cerf N J, Wenger J, Tualle-Brouri R and Grangier Ph 2004 Phys. Rev. Lett. 93 130409
[20] Takahashi H, Neergaard-Nielsenl J S, Takeuchil M, Takeokal M, Hayasakal K, Furusawa A and Sasakil M 2010 Nat. Photon. 4 178
[21] Agarwal G S and Tara K 1991 Phys. Rev. A 43 492
[22] Hu L Y and Fan H Y 2009 Chin. Phys. B 18 4657
[23] Zhou J, Fan H Y and Song J 2012 Chin. Phys. B 21 070301
[24] Xu L J, Tan G B, Ma S J and Guo Q 2013 Chin. Phys. B 22 030311
[25] Wang S, Yuan H C and Xu X F 2013 Eur. Phys. J. D 67 102
[26] Ourjoumtsev A, Tualle-Brouri R, Laurat J and Grangier Ph 2006 Science 312 83
[27] Boyd R W, Chan K W and O’Sullivan M N 2007 Science 317 1874
[28] Zavatta A, Parigi V, Kim M S, Jeong H and Bellini M 2009 Phys. Rev. Lett. 103 140406
[29] Kim M S 2008 J. Phys. B: At. Mol. Opt. Phys. 41 133001
[30] Zhang Z X and Fan H Y 1993 Phys. Lett. A 174 206
[31] Hu L Y, Jia F and Zhang Z M 2012 J. Opt. Soc. Am. B 29 1456
[32] Meng X G, Wang Z, Fan H Y, Wang J S and Yang Z S 2012 J. Opt. Soc. Am. B 29 1844
[33] Wang X B, Kwek L C, Liu Y and Oh C H 2001 J. Phys. B: At. Mol. Opt. Phys. 34 1059
[34] Wang S, Yuan H C and Xu X F 2013 Opt. Commun. 298–299 154
[35] Wang S, Fan H Y and Hu L Y 2012 J. Opt. Soc. Am. B 29 1020
[36] Walls D F and Milburn G J 1995 Quantum Optics (Berlin: Springer-Verlag)
[37] Lai W K, Buzek V and Knight P L 1991 Phys. Rev. A 44 6043
[38] Zhang W M, Feng D F and Gilmore R 1990 Rev. Mod. Phys. 62 867
[39] Lee C T 1990 Phys. Rev. A 41 1569
[1] Continuous-variable quantum key distribution based on photon addition operation
Xiao-Ting Chen(陈小婷), Lu-Ping Zhang(张露萍), Shou-Kang Chang(常守康), Huan Zhang(张欢), and Li-Yun Hu(胡利云). Chin. Phys. B, 2021, 30(6): 060304.
[2] Higher-order nonclassical effects generated by multiple-photon annihilation-then-creation and creation-then-annihilation coherent states
Hong-Chun Yuan(袁洪春), Xue-Xiang Xu(徐学翔), Jin Xiao(肖进), Chao Xiong(熊超), Xi-Fang Zhu(朱锡芳). Chin. Phys. B, 2016, 25(5): 054202.
[3] Non-Gaussian quantum states generation and robust quantum non-Gaussianity via squeezing field
Tang Xu-Bing (唐绪兵), Gao Fang (高放), Wang Yao-Xiong (王耀雄), Kuang Sen (匡森), Shuang Feng (双丰). Chin. Phys. B, 2015, 24(3): 034208.
[4] New formulas for normalizing photon-added (-subtracted) two-mode squeezed thermal states
Hu Li-Yun (胡利云), Fan Hong-Yi (范洪义), Zhang Zhi-Ming (张智明). Chin. Phys. B, 2013, 22(3): 034202.
[5] Effects of photon addition on quantum nonlocality of squeezed entangled coherent states
Zhou Ben-Yuan (周本元), Deng Lei (邓磊), Duan Yong-Fa (段永法), Yu Li (喻莉), Li Gao-Xiang (李高翔). Chin. Phys. B, 2012, 21(9): 090302.
No Suggested Reading articles found!