| CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
|
|
|
Mediated interactions between two impurities immersed in a Bose-Einstein condensate |
| Dong-Chen Zheng(郑东琛)1,2, Chun-Rong Ye(叶春荣)1,2, Yan-Xue Lin(林燕雪)1,2, Lin Wen(文林)3,†, and Renyuan Liao(廖任远)1,2,‡ |
1 College of Physics and Energy, Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fuzhou 350117, China; 2 Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage, Fuzhou 350117, China; 3 College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China |
|
|
|
|
Abstract We consider two pointlike static impurities without direct interaction immersed in a three-dimensional Bose-Einstein condensate (BEC) at zero temperature. By solving the Gross-Pitaevskii (GP) equation in a perturbative manner, we calculate the ground state energy in the region where the atom-impurity interaction is assumed to be weak. We obtain an analytical expression for the spatial distribution of atom number density and the effective force between these two impurities. The effective force is found to be closely related to the strength of the atom-impurity interaction and the relative distance between these two impurities. Two critical relative distances are found between the two impurities. The first one corresponds to the vanishing of the perturbed energy with impurities, although the effective force between the two impurities still exists. At the second critical value, the energy of the impurities changes linearly with the atom-impurity interaction; otherwise, it changes quadratically with the atom-impurity interaction.
|
Received: 02 April 2025
Revised: 22 June 2025
Accepted manuscript online: 02 July 2025
|
|
PACS:
|
67.85.-d
|
(Ultracold gases, trapped gases)
|
| |
67.85.Bc
|
(Static properties of condensates)
|
| |
71.38.Mx
|
(Bipolarons)
|
|
| Fund: R. Liao acknowledges funding from the National Natural Science Foundation of China (Grant Nos. 12174055 and 11674058) and the Natural Science Foundation of Fujian (Grant No. 2020J01195). LinWen acknowledges funding from the National Natural Science Foundation of China (Grant No. 12175027). |
Corresponding Authors:
Lin Wen, Renyuan Liao
E-mail: wlqx@cqnu.edu.cn;ryliao@fjnu.edu.cn
|
| About author: 2025-126702-250569.pdf |
Cite this article:
Dong-Chen Zheng(郑东琛), Chun-Rong Ye(叶春荣), Yan-Xue Lin(林燕雪), Lin Wen(文林), and Renyuan Liao(廖任远) Mediated interactions between two impurities immersed in a Bose-Einstein condensate 2025 Chin. Phys. B 34 126702
|
[1] Landau L and Pekar S 1948 Zh. Eksp. Teor. Fiz 18 419 [2] GershensonME, Podzorov V and Morpurgo A F 2006 Rev. Mod. Phys. 78 973 [3] Dagotto E 1994 Rev. Mod. Phys. 66 763 [4] Devreese J T and Alexandrov A S 2009 Rep. Prog. Phys. 72 066501 [5] Tempere J, Casteels W, Oberthaler M K, Knoop S, Timmermans E and Devreese J T 2009 Phys. Rev. B 80 184504 [6] Weinberg S 1995 The Quantum Theory of Fields (Cambridge: Cambridge University Press) [7] Camacho-Guardian A and Bruun G M 2018 Phys. Rev. X 8 031042 [8] Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 108 1175 [9] Scalapino D 1995 Phys. Rep. 250 329 [10] Baroni C, Lamporesi G and Zaccanti M 2024 Nat. Rev. Phys. 6 736 [11] Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225 [12] Schirotzek A,Wu C H, Sommer A and ZwierleinMW2009 Phys. Rev. Lett. 102 230402 [13] Kohstall C, Zaccanti M, Jag M, Trenkwalder A, Massignan P, Bruun G M, Schreck F and Grimm R 2012 Nature 485 615 [14] Koschorreck M, Pertot D, Vogt E, Fröhlich B, FeldMand KöhlM2012 Nature 485 619 [15] Scazza F, Valtolina G, Massignan P, Recati A, Amico A, Burchianti A, Fort C, Inguscio M, Zaccanti M and Roati G 2017 Phys. Rev. Lett. 118 083602 [16] Ness G, Shkedrov C, Florshaim Y, Diessel O K, von Milczewski J, Schmidt R and Sagi Y 2020 Phys. Rev. X 10 041019 [17] Baroni C, Huang B, Fritsche I, Dobler E, Anich G, Kirilov E, Grimm R, Bastarrachea-MagnaniMA, Massignan P and Bruun GM2024 Nat. Phys. 20 68 [18] Chevy F 2006 Phys. Rev. A 74 063628 [19] Prokof’ev N and Svistunov B 2008 Phys. Rev. B 77 020408 [20] Punk M, Dumitrescu P T and ZwergerW2009 Phys. Rev. A 80 053605 [21] Combescot R, Giraud S and Leyronas X 2009 Europhys. Lett. 88 60007 [22] Mora C and Chevy F 2010 Phys. Rev. Lett. 104 230402 [23] Cui X and Zhai H 2010 Phys. Rev. A 81 041602 [24] Massignan P and Bruun G M 2011 Eur. Phys. J. D 65 83 [25] Massignan P, Zaccanti M and Bruun G M 2014 Rep. Prog. Phys. 77 034401 [26] Spethmann N, Kindermann F, John S, Weber C, Meschede D and Widera A 2012 Phys. Rev. Lett. 109 235301 [27] Scelle R, Rentrop T, Trautmann A, Schuster T and Oberthaler M K 2013 Phys. Rev. Lett. 111 070401 [28] Fukuhara T, Kantian A, Endres M, Cheneau M, Schauß P, Hild S, Bellem D, Schollwöck U, Giamarchi T, Gross C, Bloch I and Kuhr S 2013 Nat. Phys. 9 235 [29] Makotyn P, Klauss C E, Goldberger D L, Cornell E A and Jin D S 2014 Nat. Phys. 10 116 [30] Yan Z Z, Ni Y, Chuang A, Dolgirev P E, Seetharam K, Demler E, Robens C and Zwierlein M 2024 Nat. Phys. 20 1395 [31] Hu M G, Van de Graaff M J, Kedar D, Corson J P, Cornell E A and Jin D S 2016 Phys. Rev. Lett. 117 055301 [32] Jørgensen N B, Wacker L, Skalmstang K T, Parish M M, Levinsen J, Christensen R S, Bruun G M and Arlt J J 2016 Phys. Rev. Lett. 117 055302 [33] Yan Z Z, Ni Y, Robens C and Zwierlein M W 2020 Science 368 190 [34] Dieterle T, Berngruber M, Holzl C, Low R, Jachymski K, Pfau T and Meinert F 2021 Phys. Rev. Lett. 126 033401 [35] Will M and Fleischhauer M 2023 New J. Phys. 25 083043 [36] Yegovtsev N, Astrakharchik G E, Massignan P and Gurarie V 2024 Phys. Rev. A 110 023310 [37] Naidon P 2018 J. Phys. Soc. Jpn. 87 043002 [38] Nakano Y, Parish M M and Levinsen J 2024 Phys. Rev. A 109 013325 [39] Lai L Q and Li Z 2024 Chin. Phys. B 33 030308 [40] Zhang T F, Li C X and Liu W M 2023 Chin. Phys. B 32 090501 [41] Ying Y, Sun L and Li H 2023 Chin. Phys. B 32 100310 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|