Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(12): 126702    DOI: 10.1088/1674-1056/adea99
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev  

Mediated interactions between two impurities immersed in a Bose-Einstein condensate

Dong-Chen Zheng(郑东琛)1,2, Chun-Rong Ye(叶春荣)1,2, Yan-Xue Lin(林燕雪)1,2, Lin Wen(文林)3,†, and Renyuan Liao(廖任远)1,2,‡
1 College of Physics and Energy, Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fuzhou 350117, China;
2 Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage, Fuzhou 350117, China;
3 College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China
Abstract  We consider two pointlike static impurities without direct interaction immersed in a three-dimensional Bose-Einstein condensate (BEC) at zero temperature. By solving the Gross-Pitaevskii (GP) equation in a perturbative manner, we calculate the ground state energy in the region where the atom-impurity interaction is assumed to be weak. We obtain an analytical expression for the spatial distribution of atom number density and the effective force between these two impurities. The effective force is found to be closely related to the strength of the atom-impurity interaction and the relative distance between these two impurities. Two critical relative distances are found between the two impurities. The first one corresponds to the vanishing of the perturbed energy with impurities, although the effective force between the two impurities still exists. At the second critical value, the energy of the impurities changes linearly with the atom-impurity interaction; otherwise, it changes quadratically with the atom-impurity interaction.
Keywords:  quantum gases      Bose-Einstein condensate      Bose polaron      mediated interaction  
Received:  02 April 2025      Revised:  22 June 2025      Accepted manuscript online:  02 July 2025
PACS:  67.85.-d (Ultracold gases, trapped gases)  
  67.85.Bc (Static properties of condensates)  
  71.38.Mx (Bipolarons)  
Fund: R. Liao acknowledges funding from the National Natural Science Foundation of China (Grant Nos. 12174055 and 11674058) and the Natural Science Foundation of Fujian (Grant No. 2020J01195). LinWen acknowledges funding from the National Natural Science Foundation of China (Grant No. 12175027).
Corresponding Authors:  Lin Wen, Renyuan Liao     E-mail:  wlqx@cqnu.edu.cn;ryliao@fjnu.edu.cn
About author:  2025-126702-250569.pdf

Cite this article: 

Dong-Chen Zheng(郑东琛), Chun-Rong Ye(叶春荣), Yan-Xue Lin(林燕雪), Lin Wen(文林), and Renyuan Liao(廖任远) Mediated interactions between two impurities immersed in a Bose-Einstein condensate 2025 Chin. Phys. B 34 126702

[1] Landau L and Pekar S 1948 Zh. Eksp. Teor. Fiz 18 419
[2] GershensonME, Podzorov V and Morpurgo A F 2006 Rev. Mod. Phys. 78 973
[3] Dagotto E 1994 Rev. Mod. Phys. 66 763
[4] Devreese J T and Alexandrov A S 2009 Rep. Prog. Phys. 72 066501
[5] Tempere J, Casteels W, Oberthaler M K, Knoop S, Timmermans E and Devreese J T 2009 Phys. Rev. B 80 184504
[6] Weinberg S 1995 The Quantum Theory of Fields (Cambridge: Cambridge University Press)
[7] Camacho-Guardian A and Bruun G M 2018 Phys. Rev. X 8 031042
[8] Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 108 1175
[9] Scalapino D 1995 Phys. Rep. 250 329
[10] Baroni C, Lamporesi G and Zaccanti M 2024 Nat. Rev. Phys. 6 736
[11] Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225
[12] Schirotzek A,Wu C H, Sommer A and ZwierleinMW2009 Phys. Rev. Lett. 102 230402
[13] Kohstall C, Zaccanti M, Jag M, Trenkwalder A, Massignan P, Bruun G M, Schreck F and Grimm R 2012 Nature 485 615
[14] Koschorreck M, Pertot D, Vogt E, Fröhlich B, FeldMand KöhlM2012 Nature 485 619
[15] Scazza F, Valtolina G, Massignan P, Recati A, Amico A, Burchianti A, Fort C, Inguscio M, Zaccanti M and Roati G 2017 Phys. Rev. Lett. 118 083602
[16] Ness G, Shkedrov C, Florshaim Y, Diessel O K, von Milczewski J, Schmidt R and Sagi Y 2020 Phys. Rev. X 10 041019
[17] Baroni C, Huang B, Fritsche I, Dobler E, Anich G, Kirilov E, Grimm R, Bastarrachea-MagnaniMA, Massignan P and Bruun GM2024 Nat. Phys. 20 68
[18] Chevy F 2006 Phys. Rev. A 74 063628
[19] Prokof’ev N and Svistunov B 2008 Phys. Rev. B 77 020408
[20] Punk M, Dumitrescu P T and ZwergerW2009 Phys. Rev. A 80 053605
[21] Combescot R, Giraud S and Leyronas X 2009 Europhys. Lett. 88 60007
[22] Mora C and Chevy F 2010 Phys. Rev. Lett. 104 230402
[23] Cui X and Zhai H 2010 Phys. Rev. A 81 041602
[24] Massignan P and Bruun G M 2011 Eur. Phys. J. D 65 83
[25] Massignan P, Zaccanti M and Bruun G M 2014 Rep. Prog. Phys. 77 034401
[26] Spethmann N, Kindermann F, John S, Weber C, Meschede D and Widera A 2012 Phys. Rev. Lett. 109 235301
[27] Scelle R, Rentrop T, Trautmann A, Schuster T and Oberthaler M K 2013 Phys. Rev. Lett. 111 070401
[28] Fukuhara T, Kantian A, Endres M, Cheneau M, Schauß P, Hild S, Bellem D, Schollwöck U, Giamarchi T, Gross C, Bloch I and Kuhr S 2013 Nat. Phys. 9 235
[29] Makotyn P, Klauss C E, Goldberger D L, Cornell E A and Jin D S 2014 Nat. Phys. 10 116
[30] Yan Z Z, Ni Y, Chuang A, Dolgirev P E, Seetharam K, Demler E, Robens C and Zwierlein M 2024 Nat. Phys. 20 1395
[31] Hu M G, Van de Graaff M J, Kedar D, Corson J P, Cornell E A and Jin D S 2016 Phys. Rev. Lett. 117 055301
[32] Jørgensen N B, Wacker L, Skalmstang K T, Parish M M, Levinsen J, Christensen R S, Bruun G M and Arlt J J 2016 Phys. Rev. Lett. 117 055302
[33] Yan Z Z, Ni Y, Robens C and Zwierlein M W 2020 Science 368 190
[34] Dieterle T, Berngruber M, Holzl C, Low R, Jachymski K, Pfau T and Meinert F 2021 Phys. Rev. Lett. 126 033401
[35] Will M and Fleischhauer M 2023 New J. Phys. 25 083043
[36] Yegovtsev N, Astrakharchik G E, Massignan P and Gurarie V 2024 Phys. Rev. A 110 023310
[37] Naidon P 2018 J. Phys. Soc. Jpn. 87 043002
[38] Nakano Y, Parish M M and Levinsen J 2024 Phys. Rev. A 109 013325
[39] Lai L Q and Li Z 2024 Chin. Phys. B 33 030308
[40] Zhang T F, Li C X and Liu W M 2023 Chin. Phys. B 32 090501
[41] Ying Y, Sun L and Li H 2023 Chin. Phys. B 32 100310
[1] Ground state of SU(3) spin-orbit coupled soft-core Bose gas
Jia Liu(刘佳), Jing Feng(冯婧), Ya-Jun Wang(王雅君), Xiao-Fei Zhang(张晓斐), and Xue-Ying Yang(杨雪滢). Chin. Phys. B, 2025, 34(6): 060301.
[2] Observation of Josephson effect in 23Na spinor Bose-Einstein condensates
Yong Qin(秦永), Xin Wang(王鑫), Jun Jian(蹇君), Wenliang Liu(刘文良), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2025, 34(3): 033701.
[3] Observation of momentum-induced broadening of width in narrow Feshbach resonances of ultracold 133Cs atoms
Zhennan Liu(刘震南), Hongxing Zhao(赵宏星), Yunfei Wang(王云飞), Yuqing Li(李玉清), Jizhou Wu(武寄洲), Wenliang Liu(刘文良), Peng Li(李鹏), Yongming Fu(付永明), Liantuan Xiao(肖连团), Jie Ma(马杰), and Suotang Jia(贾锁堂). Chin. Phys. B, 2025, 34(2): 023701.
[4] Computing the ground state solution of Bose-Einstein condensates by an energy-minimizing normalized residual network
Ren-Tao Wu(吴任涛), Ji-Dong Gao(高济东), Yu-Han Wang(王宇晗), Zhen-Wei Deng(邓振威), Ming-Jun Li(李明军), and Rong-Pei Zhang(张荣培). Chin. Phys. B, 2025, 34(10): 100305.
[5] Pairing transitions in a binary Bose gas
Zesheng Shen(沈泽盛) and Lan Yin(尹澜). Chin. Phys. B, 2025, 34(10): 106702.
[6] Manipulation of gray-ring dark solitons in a two-component Bose gas with tunable soft-core interactions
Qiu-Ling He(何秋玲), Lin-Xue Wang(王林雪), Rui Jin(金瑞), Fang Wang(王芳), Ya-Jun Wang(王雅君), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2025, 34(10): 100306.
[7] Kármán vortex street in a spin-orbit-coupled Bose-Einstein condensate with PT symmetry
Kai-Hua Shao(邵凯花), Bao-Long Xi(席保龙), Zhong-Hong Xi(席忠红), Pu Tu(涂朴), Qing-Qing Wang(王青青), Jin-Ping Ma(马金萍), Xi Zhao(赵茜), and Yu-Ren Shi(石玉仁). Chin. Phys. B, 2024, 33(6): 060501.
[8] Effects of drive imbalance on the particle emission from a Bose-Einstein condensate in a one-dimensional lattice
Long-Quan Lai(赖龙泉) and Zhao Li(李照). Chin. Phys. B, 2024, 33(3): 030308.
[9] Dynamical nonlinear excitations induced by interaction quench in a two-dimensional box-trapped Bose-Einstein condensate
Zhen-Xia Niu(牛真霞) and Chao Gao(高超). Chin. Phys. B, 2024, 33(2): 020314.
[10] Interference-induced suppression of particle emission from a Bose-Einstein condensate in lattice with time-periodic modulations
Long-Quan Lai(赖龙泉) and Zhao Li(李照). Chin. Phys. B, 2024, 33(10): 100303.
[11] Super-ballistic diffusion in a quasi-periodic non-Hermitian driven system with nonlinear interaction
Jian-Zheng Li(李建政), Guan-Ling Li(李观玲), and Wen-Lei Zhao(赵文垒). Chin. Phys. B, 2023, 32(9): 096601.
[12] Special breathing structures induced by bright solitons collision in a binary dipolar Bose-Einstein condensates
Gen Zhang(张根), Li-Zheng Lv(吕李政), Peng Gao(高鹏), and Zhan-Ying Yang(杨战营). Chin. Phys. B, 2023, 32(11): 110303.
[13] Mode dynamics of Bose-Einstein condensates in a single-well potential
Yaojun Ying(应耀俊), Lizhen Sun(孙李真), and Haibin Li(李海彬). Chin. Phys. B, 2023, 32(10): 100310.
[14] Superfluid to Mott-insulator transition in a one-dimensional optical lattice
Wenliang Liu(刘文良), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Li Tian(田丽), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(7): 073702.
[15] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
No Suggested Reading articles found!