|
|
|
Energy mechanism of the first-order superradiant phase transition in cavity-BEC system with double asymmetric pump beams |
| Wei Qin(覃威)1,2,†, Dong-Chen Zheng(郑东琛)1,2,†, Jia-Ying Lin(林佳颖)1,2, Yuan-Hong Chen(陈元鸿)1,2, and Renyuan Liao(廖任远)1,2,‡ |
1 College of Physics and Energy, Fujian Normal University, Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fuzhou 350117, China; 2 Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy Storage, Fuzhou 350117, China |
|
|
|
|
Abstract We consider a Bose-Einstein condensate loaded inside an optical cavity and exposed to two crossed coherent pump fields with same imbalance parameter $\gamma$. We identify different effects between pure standing wave fields ($\gamma=1$) and the pump beams combining standing wave and running wave ($\gamma\neq1$). In particular, for $\gamma=1$, the system only hosts a normal phase and a superradiant phase. In contrast, for $\gamma\neq1$, the system features three distinctive phases: the normal phase ($\mathrm{NP}$), superradiant phase 1 ($\mathrm{SR}_1$), and superradiant phase 2 ($\mathrm{SR}_2$). Importantly, the superradiance is subdivided into different types characterized by the photon phase. Furthermore, we determine perturbatively the phase boundary separating the normal phase and the superradiant phases, and find that there exists a competitive relationship of energy minimum on the overlapping region between $\mathrm{SR_1}$ and $\mathrm{SR_2}$. Interestingly, the transition between the normal phase to $\mathrm{SR_1}$ or $\mathrm{SR_2}$ is identified to be a second-order phase transition, while the transition between $\mathrm{SR_1}$ and $\mathrm{SR_2}$ is a first-order transition. When the first-order phase transition occurs, the phase of the photons changes abruptly from $0$ to $\pi/2$.
|
Received: 21 March 2025
Revised: 22 May 2025
Accepted manuscript online: 30 May 2025
|
|
PACS:
|
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
| |
64.70.Tg
|
(Quantum phase transitions)
|
| |
03.75.Nt
|
(Other Bose-Einstein condensation phenomena)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174055 and 11674058) and the Natural Science Foundation of Fujian Province, China (Grant No. 2020J01195). |
Corresponding Authors:
Renyuan Liao
E-mail: ryliao@fjnu.edu.cn
|
Cite this article:
Wei Qin(覃威), Dong-Chen Zheng(郑东琛), Jia-Ying Lin(林佳颖), Yuan-Hong Chen(陈元鸿), and Renyuan Liao(廖任远) Energy mechanism of the first-order superradiant phase transition in cavity-BEC system with double asymmetric pump beams 2025 Chin. Phys. B 34 120507
|
[1] Ritsch H, Domokos P, Brennecke F and Esslinger T 2013 Rev. Mod. Phys. 85 553 [2] Vaidya V D, Guo Y, Kroeze R M, Ballantine K E, Kollár A J, Keeling J and Lev B L 2018 Phys. Rev. X 8 011002 [3] Mivehvar F, Piazza F, Donner T and Ritsch H 2021 Advances in Physics 70 1 [4] Zhang X, Chen Y, Wu Z, Wang J, Fan J, Deng S and Wu H 2021 Science 373 1359 [5] Kongkhambut P, Skulte J, Mathey L, Cosme J G, Hemmerich A and Kebler H 2022 Science 377 670 [6] Dreon D, Baumgärtner A, Li X, Hertlein S, Esslinger T and Donner T 2022 Nature 608 494 [7] Helson V, Zwettler T, Mivehvar F, Colella E, Roux K, Konishi H, Ritsch H and Brantut J P 2023 Nature 618 716 [8] Fraxanet J, Dauphin A, Lewenstein M, Barbiero L and González- Cuadra D 2023 Phys. Rev. Lett. 131 263001 [9] Masalaeva N, Ritsch H and Mivehvar F 2023 Phys. Rev. Lett. 131 173401 [10] Skulte J, Kongkhambut P, Rao S, Mathey L, Keßler H, Hemmerich A and Cosme J G 2023 Phys. Rev. Lett. 130 163603 [11] Yan Z, Ho J, Lu Y H, Masson S J, Asenjo-Garcia A and Stamper-Kurn D M 2023 Phys. Rev. Lett. 131 253603 [12] Young D J, Chu A, Song E Y, Barberena D, Wellnitz D, Niu Z, Schäfer V M, Lewis-Swan R J, Rey A M and Thompson J K 2024 Nature 625 679 [13] Marsh B P, Kroeze R M, Ganguli S, Gopalakrishnan S, Keeling J and Lev B L 2024 Phys. Rev. X 14 011026 [14] Finger F, Rosa-Medina R, Reiter N, Christodoulou P, Donner T and Esslinger T 2024 Phys. Rev. Lett. 132 093402 [15] Baumann K, Guerlin C, Brennecke F and Esslinger T 2010 Nature 464 1301 [16] Mottl R, Brennecke F, Baumann K, Landig R, Donner T and Esslinger T 2012 Science 336 1570 [17] Norcia M A, Lewis-Swan R J, Cline J R K, Zhu B, Rey A M and Thompson J K 2018 Science 361 259 [18] Mivehvar F, Ritsch H and Piazza F 2019 Phys. Rev. Lett. 122 113603 [19] Defenu N, Donner T, Macrí T, Pagano G, Ruffo S and Trombettoni A 2023 Rev. Mod. Phys. 95 035002 [20] Wu Z, Fan J, Zhang X, Qi J andWu H 2023 Phys. Rev. Lett. 131 243401 [21] Baumann K, Mottl R, Brennecke F and Esslinger T 2011 Phys. Rev. Lett. 107 140402 [22] Klinder J, Keßler H, Bakhtiari M R, Thorwart M and Hemmerich A 2015 Phys. Rev. Lett. 115 230403 [23] Li X, Dreon D, Zupancic P, Baumgärtner A, Morales A, Zheng W, Cooper N R, Donner T and Esslinger T 2021 Phys. Rev. Res. 3 L012024 [24] Nie X and Zheng W 2023 Phys. Rev. A 108 043312 [25] Nagy D, Szirmai G and Domokos P 2008 Eur. Phys. J. D 48 127 [26] Piazza F, Strack P and Zwerger W 2013 Ann. Phys. 339 135 [27] Chen Y, Liu M and Chen X 2023 Chin. Phys. B 32 104213 [28] Zupancic P, Dreon D, Li X, Baumgärtner A, Morales A, Zheng W, Cooper N R, Esslinger T and Donner T 2019 Phys. Rev. Lett. 123 233601 [29] Tan H, Han J, ZhengW, Yuan J and Li Y 2022 Phys. Rev. A 106 023315 [30] Bhaseen M J, Mayoh J, Simons B D and Keeling J 2012 Phys. Rev. A 85 013817 [31] Piazza F and Ritsch H 2015 Phys. Rev. Lett. 115 163601 [32] Léonard J, Morales A, Zupancic P, Donner T and Esslinger T 2017 Science 358 1415 [33] Léonard J, Morales A, Zupancic P, Esslinger T and Donner T 2017 Nature 543 87 [34] Mivehvar F, Ostermann S, Piazza F and Ritsch H 2018 Phys. Rev. Lett. 120 123601 [35] Morales A, Zupancic P, Léonard J, Esslinger T and Donner T 2018 Nat. Mater. 17 686 [36] Qin W, Zheng D C, Wu Z D, Chen Y H and Liao R 2024 Phys. Rev. A 109 013310 [37] Wu B H, Yang X X, Chen Y and Zhang W 2024 Chin. Phys. Lett. 41 064201 [38] Klinder J, Kebler H, Wolke M, Mathey L and Hemmerich A 2015 PNAS 112 3290 [39] Landini M, Dogra N, Kroeger K, Hruby L, Donner T and Esslinger T 2018 Phys. Rev. Lett. 120 223602 [40] Morales A, Dreon D, Li X, Baumgärtner A, Zupancic P, Donner T and Esslinger T 2019 Phys. Rev. A 100 013816 [41] Zhai H 2021 A Single Atom (Cambridge University Press) pp. 3–30 [42] Piazza F and Ritsch H 2015 Phys. Rev. Lett. 115 163601 [43] Ali A, Saif F and Saito H 2022 Phys. Rev. A 105 063318 [44] Gao P, Zhou Z W, Guo G C and Luo X W 2023 Phys. Rev. A 107 023311 [45] Sachdev S 2011 Quantum Phase Transitions, 2nd edn. (Cambridge University Press) [46] Lifshitz E and Pitaevskii L 2013 Statistical Physics: Theory of the Condensed State (Course of Theoretical Physics Vol. 9 Book 2) (Butterworth-Heinemann) [47] Press W H, Teukolsky S A, Vetterling W T and Flannery B P 2007 Numerical Recipes with Source Code CD-ROM 3rd Edition: The Art of Scientific Computing (USA: Cambridge University Press) ISBN 0521884071 [48] Ali A, Saif F and Saito H 2022 Phys. Rev. A 105 063318 [49] Gao P, Zhou Z W, Guo G C and Luo X W 2023 Phys. Rev. A 107 023311 [50] Tan H, Cao R and Li Y Q 2023 Acta Phys. Sin 72 183701 (in Chinese) [51] Fan J, Chen G and Jia S 2020 Phys. Rev. A 101 063627 [52] Keeling J, Bhaseen M J and Simons B D 2014 Phys. Rev. Lett. 112 143002 [53] Chen Y, Yu Z and Zhai H 2014 Phys. Rev. Lett. 112 143004 [54] Piazza F and Strack P 2014 Phys. Rev. Lett. 112 143003 [55] Chen Y, Zhai H and Yu Z 2015 Phys. Rev. A 91 021602 [56] Kollath C, Sheikhan A, Wolff S and Brennecke F 2016 Phys. Rev. Lett. 116 060401 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|