Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(11): 115202    DOI: 10.1088/1674-1056/ade06b
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Dependence of Rayleigh-Taylor instability of finite-thickness shell on initial perturbed wavelengths

Hong-Yu Guo(郭宏宇)1,†, Ben-Jin Guan(关本金)1,2,†,‡, Li-Feng Wang(王立锋)2,3, Zhi-Yuan Li(李志远)2, and Ying-Jun Li(李英骏)1,§
1 State Key Laboratory for Tunnel Engineering, China University of Mining and Technology, Beijing 100083, China;
2 Institute of Applied Physics and Computational Mathematics, Beijing 100094, China;
3 Center for Applied Physics and Technology, HEDPS, and College of Engineering, Peking University, Beijing 100871, China
Abstract  Rayleigh–Taylor instability (RTI) of finite-thickness shell significantly impacts shell deformation and material mixing processes, with crucial implications for inertial confinement fusion (ICF). This study focuses on the RTI growth at the dual interfaces of a thin shell. A second-order weakly nonlinear (WN) analytical theory is developed to investigate the nonlinear deformation of the shell induced by different perturbation wavelengths initially imposed at the upper and lower interfaces. The validity of the theoretical results within the WN regime has been confirmed via two-dimensional Eulerian numerical simulations. Due to the interface coupling effect, the initially imposed single-mode perturbations at the upper and lower interfaces progressively evolve, exhibiting characteristics typical of multi-mode perturbations. When the initial perturbation wavelengths differ significantly, the primary structure of RTI retains its integrity, a behavior attributed to the dominance of long-wavelength perturbations. For comparable initial wavelengths, mode-coupling significantly distorts the bubble-spike structure in RTI, with the thin shell becoming prone to rupture due to enhanced nonlinear interactions.
Keywords:  Rayleigh-Taylor instability      mode-coupling      inertial confinement fusion  
Received:  30 March 2025      Revised:  26 May 2025      Accepted manuscript online:  04 June 2025
PACS:  52.57.Fg (Implosion symmetry and hydrodynamic instability (Rayleigh-Taylor, Richtmyer-Meshkov, imprint, etc.))  
  47.20.Ma (Interfacial instabilities (e.g., Rayleigh-Taylor))  
  52.35.Py (Macroinstabilities (hydromagnetic, e.g., kink, fire-hose, mirror, ballooning, tearing, trapped-particle, flute, Rayleigh-Taylor, etc.))  
Fund: Project supported by the Fundamental Research Funds for the Central Universities (Grant No. 2022YQLX01), the Fund from the State Key Laboratory of Computational Physics (Grant No. 6142A05QN23009), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA 25051000).
Corresponding Authors:  Ben-Jin Guan, Ying-Jun Li     E-mail:  bjguanshandong@163.com;lyj@aphy.iphy.ac.cn

Cite this article: 

Hong-Yu Guo(郭宏宇), Ben-Jin Guan(关本金), Li-Feng Wang(王立锋), Zhi-Yuan Li(李志远), and Ying-Jun Li(李英骏) Dependence of Rayleigh-Taylor instability of finite-thickness shell on initial perturbed wavelengths 2025 Chin. Phys. B 34 115202

[1] Rayleigh L 1882 Proc. London Math. Soc. s1-14 170
[2] Taylor G 1950 Proc. R. Soc. Lond. A 201 192
[3] Gamezo V N, Khokhlov A M, Oran E S, Chtchelkanova A Y and Rosenberg R O 2003 Science 299 77
[4] Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L and Suter L J 2004 Phys. Plasmas 11 339
[5] Wang L F, Ye W H, He X T, Wu J F, Fan Z F, Xue C, Guo H Y, Miao W Y, Yuan Y T, Dong J Q, Jia G, Zhang J, Li Y J, Liu J, Wang M, Ding Y K and Zhang W Y 2017 Sci. China-Phys. Mech. Astron. 60 055201
[6] Zylstra A B, Hurricane O A, Callahan D A, et al. 2022 Nature 601 542
[7] Guo Y, Wu D and Zhang J 2024 Phys. Plasmas 31 112106
[8] Li J, Yan R, Zhao B, Wu J F, Wang L F and Zou S Y 2024 Phys. Plasmas 31 012703
[9] Jacobs J W and Catton I 1988 J. Fluid Mech. 187 329
[10] Liu W H, Wang L F, Ye W H and He X T 2012 Phys. Plasmas 19 042705
[11] Wang L F, Wu J F, Fan Z F, Ye W H, He X T, Zhang W Y, Dai Z S, Gu J F and Xue C 2012 Phys. Plasmas 19 112706
[12] Wang L F, Wu J F, Ye W H, Zhang W Y and He X T 2013 Phys. Plasmas 20 042708
[13] Zhang J, Wang L F, Ye W H, Wu J F, Guo H Y, Zhang W Y and He X T 2017 Phys. Plasmas 24 062703
[14] Lai H L, Xu A G, Zhang G C, Gan Y B, Ying Y J and Sauro Succi 2016 Phys. Rev. E 94 023106
[15] Xin J, Yan R, Wan Z H, Sun J, Zheng J, Zhang H, Aluie H and Betti R 2019 Phys. Plasmas 26 032703
[16] Mikaelian K O 1982 Phys. Rev. A 26 2140
[17] Mikaelian K O 1983 Phys. Rev. A 28 1637
[18] Mikaelian K O 2025 Phys. Fluids 37 032114
[19] Guo H Y, Wang L F, Ye W H, Wu J F and Zhang W Y 2017 Chin. Phys. Lett. 34 075201
[20] Guo H Y, Wang L F, Ye W H, Wu J F and Zhang W Y 2017 Chin. Phys. B 26 125202
[21] Guo H Y, Wang L F, Ye W H, Wu J F, Li Y J and Zhang W Y 2018 Chin. Phys. B 27 025206
[22] Weis M R, Zhang P, Lau Y Y, Rittersdorf I M, Zier J C, Gilgenbach R M and Peterson K J 2014 Phys. Plasmas 21 122708
[23] Velikovich A L and Schmit P F 2015 Phys. Plasmas 22 122711
[24] Wilkinson J P and Jacobs J W 2007 Phys. Fluids 19 124102
[25] Ding J C, Si T, Yang J M, Lu X Y, Zhai Z G and Luo X S 2017 Phys. Rev. Lett. 119 014501
[26] Wang L F, Guo H Y, Wu J F, Ye W H, Liu J, Zhang W Y and He X T 2014 Phys. Plasmas 21 122710
[27] Guo H Y, Wang L F, Ye W H, Wu J F, Zhang J, Ding Y K, Zhang W Y and He X T 2017 Phys. Plasmas 24 112708
[28] Guo H Y, Cheng T, Li J and Li Y J 2022 Chin. Phys. B 31 035203
[29] Li Z Y, Wang L F, Wu J F and Ye W H 2020 Acta Mech. Sin. 36 789
[30] Einfeldt B 1988 SIAM Journal on Numerical Analysis 25 294
[31] Roe P L 1986 Ann. Rev. Fluid Mech. 18 337
[1] Rayleigh-Taylor instability of viscoelastic self-rewetting film flowing down a temperature-controlled inclined substrate
Siyi An(安思亦) and Yongjun Jian(菅永军). Chin. Phys. B, 2023, 32(6): 064701.
[2] Mode dynamics of Bose-Einstein condensates in a single-well potential
Yaojun Ying(应耀俊), Lizhen Sun(孙李真), and Haibin Li(李海彬). Chin. Phys. B, 2023, 32(10): 100310.
[3] Effect of initial phase on the Rayleigh—Taylor instability of a finite-thickness fluid shell
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), Jing Li(李景), and Ying-Jun Li(李英骏). Chin. Phys. B, 2022, 31(3): 035203.
[4] Scaling of rise time of drive current on development of magneto-Rayleigh-Taylor instabilities for single-shell Z-pinches
Xiaoguang Wang(王小光), Guanqiong Wang(王冠琼), Shunkai Sun(孙顺凯), Delong Xiao(肖德龙), Ning Ding(丁宁), Chongyang Mao(毛重阳), and Xiaojian Shu(束小建). Chin. Phys. B, 2022, 31(2): 025203.
[5] Magnetohydrodynamic Kelvin-Helmholtz instability for finite-thickness fluid layers
Hong-Hao Dai(戴鸿昊), Miao-Hua Xu(徐妙华), Hong-Yu Guo(郭宏宇), Ying-Jun Li(李英骏), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(12): 120401.
[6] A simplified approximate analytical model for Rayleigh-Taylor instability in elastic-plastic solid and viscous fluid with thicknesses
Xi Wang(王曦), Xiao-Mian Hu(胡晓棉), Sheng-Tao Wang(王升涛), and Hao Pan(潘昊). Chin. Phys. B, 2021, 30(4): 044702.
[7] A fitting formula for electron-ion energy partition fraction of 3.54-MeV fusion alpha particles in hot dense deuterium-tritium plasmas
Yan-Ning Zhang(张艳宁), Zhi-Gang Wang(王志刚), Yong-Tao Zhao(赵永涛), and Bin He(何斌). Chin. Phys. B, 2021, 30(1): 015202.
[8] Suppression of auto-resonant stimulated Brillouin scattering in supersonic flowing plasmas by different forms of incident lasers
S S Ban(班帅帅), Q Wang(王清), Z J Liu(刘占军), C Y Zheng(郑春阳), X T He(贺贤土). Chin. Phys. B, 2020, 29(9): 095202.
[9] Interface coupling effects of weakly nonlinear Rayleigh-Taylor instability with double interfaces
Zhiyuan Li(李志远), Lifeng Wang(王立锋), Junfeng Wu(吴俊峰), Wenhua Ye(叶文华). Chin. Phys. B, 2020, 29(3): 034704.
[10] Weakly nonlinear multi-mode Bell–Plesset growth in cylindrical geometry
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), and Ying-Jun Li(李英骏). Chin. Phys. B, 2020, 29(11): 115202.
[11] Hot-electron deposition and implosion mechanisms within electron shock ignition
Wan-Li Shang(尚万里)†, Xing-Sen Che(车兴森), Ao Sun(孙奥), Hua-Bing Du(杜华冰), Guo-Hong Yang(杨国洪), Min-Xi Wei(韦敏习), Li-Fei Hou(侯立飞), Yi-Meng Yang(杨轶濛), Wen-Hai Zhang(张文海), Shao-Yong Tu(涂绍勇), Feng Wang(王峰), Hai-En He(何海恩), Jia-Min Yang(杨家敏), Shao-En Jiang(江少恩), and Bao-Han Zhang(张保汉). Chin. Phys. B, 2020, 29(10): 105201.
[12] Numerical study on magneto-Rayleigh-Taylor instabilities for thin liner implosions on the primary test stand facility
Xiao-Guang Wang(王小光), Shun-Kai Sun(孙顺凯), De-Long Xiao(肖德龙), Guan-Qiong Wang(王冠琼), Yang Zhang(张扬), Shao-Tong Zhou(周少彤), Xiao-Dong Ren(任晓东), Qiang Xu(徐强), Xian-Bin Huang(黄显宾), Ning Ding(丁宁), Xiao-Jian Shu(束小建). Chin. Phys. B, 2019, 28(3): 035201.
[13] Influence analysis of symmetry on capsule in six-cylinder-port hohlraum
You Zou(邹游), Wudi Zheng(郑无敌), Xin Li(李欣). Chin. Phys. B, 2019, 28(3): 035203.
[14] Coupling between velocity and interface perturbations in cylindrical Rayleigh-Taylor instability
Hong-Yu Guo(郭宏宇), Li-Feng Wang(王立锋), Wen-Hua Ye(叶文华), Jun-Feng Wu(吴俊峰), Wei-Yan Zhang(张维岩). Chin. Phys. B, 2018, 27(5): 055205.
[15] Rayleigh-Taylor instability at spherical interfaces of incompressible fluids
Hong-Yu Guo(郭宏宇), Li-Feng Wang(王立锋), Wen-Hua Ye(叶文华), Jun-Feng Wu(吴俊峰), Ying-Jun Li(李英骏), Wei-Yan Zhang(张维岩). Chin. Phys. B, 2018, 27(2): 025206.
No Suggested Reading articles found!