Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 064701    DOI: 10.1088/1674-1056/acc78b
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Rayleigh-Taylor instability of viscoelastic self-rewetting film flowing down a temperature-controlled inclined substrate

Siyi An(安思亦) and Yongjun Jian(菅永军)
School of Mathematical Science, Inner Mongolia University, Hohhot 010021, China
Abstract  Rayleigh-Taylor (RT) instability of gravity-driven viscoelastic self-rewetting film flowing under an inclined substrate uniformly heated or cooled is considered. The surface tension of self-rewetting film is considered as a quadratic function of temperature. The long wave hypothesis is used to derive a nonlinear free surface evolution equation of the thin viscoelastic film. Linear stability analysis shows that for a prescribed the viscoelastic coefficient, substrate cooling products instability, while substrate heating remains stability. Furthermore, we analyze the influence of viscoelastic coefficient on RT instability. Results show that the viscoelastic coefficient reinforces the RT instability whether the substrate is heated or cooled. Moreover, we use the line method to numerically simulate the nonlinear evolution equation and systematically examine the space-time variation of the film free surface. The numerical results illustrate that increasing the viscoelastic coefficient can enhance the disturbance amplitude and wave frequency. This means that the viscoelastic coefficient makes the system unstable, which is consistent with result of the linear stability analysis. In addition, the oscillation tends to accumulate downstream of the inclined substrate when the evolution time is long enough. Finally, the variation of film thickness with related parameters for different viscoelastic coefficients is investigated.
Keywords:  Rayleigh-Taylor instability      self-rewetting film      viscoelastic liquid  
Received:  30 October 2022      Revised:  19 February 2023      Accepted manuscript online:  25 March 2023
PACS:  47.20.Ma (Interfacial instabilities (e.g., Rayleigh-Taylor))  
  47.15.gm (Thin film flows)  
  47.50.-d (Non-Newtonian fluid flows)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 1226 2026), the Natural Science Foundation of Inner Mongolia Autonomous Region of China (Grant No. 2021 MS01007), and the Inner Mongolia Grassland Talent, China (Grant No. 12000-12102013).
Corresponding Authors:  Yongjun Jian     E-mail:  jianyj@imu.edu.cn

Cite this article: 

Siyi An(安思亦) and Yongjun Jian(菅永军) Rayleigh-Taylor instability of viscoelastic self-rewetting film flowing down a temperature-controlled inclined substrate 2023 Chin. Phys. B 32 064701

[1] Taylor G I 1950 Proc. R. Soc. Lond. A 201 192
[2] Lewis D J1950 Proc. R. Soc. Lond. A 202 81
[3] Rayleigh L1882 Proc. Lond. Math. Soc. s1-14 170
[4] Burgess J M, Juel A, McCormick W D, Swift J B and Swinney H L 2001 Phys. Rev. Lett. 86 1203
[5] Seemann R, Herminghaus S, Neto C, Schlagowski S, Podzimek D, Konrad R, Mantz H and Jacobs K2005 J. Phys: Condens. Matter 17 267
[6] Haas F C 1964 AICHE J. 10 920
[7] Stone H A, Stroock A D and Ajdari A 2004 Annu. Rev. Fluid Mech. 36 381
[8] Vinningland J L, Johnsen O, Flekkoy E G, Toussaint R and Måloy K J 2007 Phys. Rev. Lett. 99 048001
[9] Sharp D H 1984 Physica D 12 3
[10] Kull H J 1991 Phys. Rep. 206 197
[11] Tomlin R J, Cimpeanu R and Papageorgiou D T 2020 Phys. Rev. Fluids 5 013703
[12] Sterman-Cohen E, Bestehorn M and Oron A 2017 Phys. Fluids 29 052105
[13] Baldwin K A, Scase M M and Hill R J 2015 Sci. Rep. 5 11706
[14] Alqatari S, Videbæk T E, Nagel S R, Hosoi A E and Bischofberger I2020 Sci. Adv. 6 eabd6605
[15] Weidner D E, Schwartz L W and Eres M H2007 Chem. Prod. Process Model. 2 1
[16] Mikaelian K O 2016 Phys. Rev. E 93 023104
[17] Scase M M and Hill R J A 2018 J. Fluid Mech. 852 543
[18] Yiantsios S G and Higgins B G 1989 Phys. Fluids A 1 1484
[19] Brun P T, Damiano A, Rieu P, Balestra G and Gallaire F 2015 Phys. Fluids 27 084107
[20] Lister J R, Rallison J M and Rees S J 2010 J. Fluid Mech. 647 239
[21] Chao Y C, Zhu L L and Yuan H 2021 Phys. Rev. Fluids 6 064001
[22] Maxwell J C1867 Philos. Trans. R. Soc. Lond. 157 49
[23] Jeffreys H 1929 The Earth, 2nd edn. (Cambridge: Cambridge University Press)
[24] Giesekus H A 1982 J. Non-Newton. Fluid Mech. 11 69
[25] Thien N P and Tanner R I 1977 J. Non-Newton. Fluid Mech. 2 353
[26] Oldroyd J G1950 Philos. Trans. R. Soc. Lond. 200 523
[27] Boffetta G, Mazzino A, Musacchio S and Vozella L 2010 J. Fluid Mech. 643 127
[28] Gou J N, Zan W T, Sun Y B, and Wang C 2021 Phys. Rev. E 104 025110
[29] Bird R B, Armstrong R C and Hassager O 1987 Dynamics of Polymeric Liquids (Wiley: Wiley-Interscience)
[30] Fu Q F, Hu T and Yang L J 2018 Phys. Fluids 30 084102
[31] Nadeem S, Akbar N S, Hayat T and Hendi A 2011 Appl. Math. Mech. 32 689
[32] Waqas H, Alghamdi M, Muhammad T and Khan M A 2021 Case Stud. Therm. Eng. 26 101097
[33] Khan M I, Khan S U, Jameel M, Chu Y M, Tlili I and Kadry S2021 Surf. Interfaces 22 100849
[34] Larson R G 1992 Rheol. Acta 31 213
[35] Savins J G 1967 Rheol. Acta 6 323
[36] Wei H H 2005 Phys. Rev. E 71 066306
[37] Abe Y 2006 Ann. NY Acad. Sci. 1077 650
[38] Karapetsas G, Sahu K C, Sefiane K and Matar O K 2014 Langmuir 30 4310
[39] Mamalis D, Koutsos V and Sefiane K 2018 Langmuir 34 1916
[40] Ye X, Zhang X, Li M and Li C 2018 Phys. Fluids 30 112103
[41] Batson W, Agnon Y and Oron A 2017 J. Fluid Mech. 819 562
[42] Ma C C and Liu J L 2021 Phys. Fluids 33 022101
[43] Scholle M, Haas A, Aksel N, Thompson H, Hewson R and Gaskell P 2009 Int. J. Heat Fluid Fl. 30 175
[44] Beard D W and Walters K 1964 Math. Proc. Cambridge 60 667
[45] Bergman T L, Incropera F P, DeWitt D P and Lavine A S 2011 Fundamentals of Heat and Mass Transfer, 3rd edn. (New York: John Wiley & Sons)
[46] Chao Y, Lu Y and Yuan H 2020 Int. J. Heat Mass Transfer 147 118942
[47] Li P and Chao Y C 2020 Chem. Eng. Sci. 227 115936
[48] Mamalis D, Koutsos V and Sefiane K 2016 Appl. Phys. Lett. 109 231601
[49] Yu Z 2018 Phys. Fluids 30 082104
[50] Hayat T, Asad S, Mustafa M and Alsulami H H 2014 Chin. Phys. B 23 084701
[51] Mohammed Rizwan Sadiq I and Usha R 2005 Int. J. Eng. Sci. 43 1435
[52] Ma C C, Liu J L, Dai X J and Liu Y Q 2022 Eur. J. Mech. B-Fluid 91 152
[53] Deissler R J and Oron A 1992 Phys. Rev. Lett. 68 2948
[54] Ajaev V S 2012 Interfacial Fluid Mechanics (Springer: Springer Boston MA)[55] Jia B N and Jian Y J 2022 Phys. Fluids 34 044104
[1] Scaling of rise time of drive current on development of magneto-Rayleigh-Taylor instabilities for single-shell Z-pinches
Xiaoguang Wang(王小光), Guanqiong Wang(王冠琼), Shunkai Sun(孙顺凯), Delong Xiao(肖德龙), Ning Ding(丁宁), Chongyang Mao(毛重阳), and Xiaojian Shu(束小建). Chin. Phys. B, 2022, 31(2): 025203.
[2] A simplified approximate analytical model for Rayleigh-Taylor instability in elastic-plastic solid and viscous fluid with thicknesses
Xi Wang(王曦), Xiao-Mian Hu(胡晓棉), Sheng-Tao Wang(王升涛), and Hao Pan(潘昊). Chin. Phys. B, 2021, 30(4): 044702.
[3] Interface coupling effects of weakly nonlinear Rayleigh-Taylor instability with double interfaces
Zhiyuan Li(李志远), Lifeng Wang(王立锋), Junfeng Wu(吴俊峰), Wenhua Ye(叶文华). Chin. Phys. B, 2020, 29(3): 034704.
[4] Weakly nonlinear multi-mode Bell–Plesset growth in cylindrical geometry
Hong-Yu Guo(郭宏宇), Tao Cheng(程涛), and Ying-Jun Li(李英骏). Chin. Phys. B, 2020, 29(11): 115202.
[5] Numerical study on magneto-Rayleigh-Taylor instabilities for thin liner implosions on the primary test stand facility
Xiao-Guang Wang(王小光), Shun-Kai Sun(孙顺凯), De-Long Xiao(肖德龙), Guan-Qiong Wang(王冠琼), Yang Zhang(张扬), Shao-Tong Zhou(周少彤), Xiao-Dong Ren(任晓东), Qiang Xu(徐强), Xian-Bin Huang(黄显宾), Ning Ding(丁宁), Xiao-Jian Shu(束小建). Chin. Phys. B, 2019, 28(3): 035201.
[6] Coupling between velocity and interface perturbations in cylindrical Rayleigh-Taylor instability
Hong-Yu Guo(郭宏宇), Li-Feng Wang(王立锋), Wen-Hua Ye(叶文华), Jun-Feng Wu(吴俊峰), Wei-Yan Zhang(张维岩). Chin. Phys. B, 2018, 27(5): 055205.
[7] Rayleigh-Taylor instability at spherical interfaces of incompressible fluids
Hong-Yu Guo(郭宏宇), Li-Feng Wang(王立锋), Wen-Hua Ye(叶文华), Jun-Feng Wu(吴俊峰), Ying-Jun Li(李英骏), Wei-Yan Zhang(张维岩). Chin. Phys. B, 2018, 27(2): 025206.
[8] Rayleigh-Taylor instability of multi-fluid layers in cylindrical geometry
Hong-Yu Guo(郭宏宇), Li-Feng Wang(王立锋), Wen-Hua Ye(叶文华), Jun-Feng Wu(吴俊峰), Wei-Yan Zhang(张维岩). Chin. Phys. B, 2017, 26(12): 125202.
[9] Cylindrical effects in weakly nonlinear Rayleigh–Taylor instability
Liu Wan-Hai (刘万海), Ma Wen-Fang (马文芳), Wang Xu-Lin (王绪林). Chin. Phys. B, 2015, 24(1): 015202.
[10] Nonlinear saturation amplitude of cylindrical Rayleigh–Taylor instability
Liu Wan-Hai (刘万海), Yu Chang-Ping (于长平), Ye Wen-Hua (叶文华), Wang Li-Feng (王立峰). Chin. Phys. B, 2014, 23(9): 094502.
No Suggested Reading articles found!