PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Coupling between velocity and interface perturbations in cylindrical Rayleigh-Taylor instability |
Hong-Yu Guo(郭宏宇)1,2, Li-Feng Wang(王立锋)2,3, Wen-Hua Ye(叶文华)2,3, Jun-Feng Wu(吴俊峰)2, Wei-Yan Zhang(张维岩)2,3 |
Graduate School, China Academy of Engineering Physics, Beijing 100088, China; 2 Institute of Applied Physics and Computational Mathematics, Beijing 100094, China; 3 HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100871, China |
|
|
Abstract Rayleigh-Taylor instability (RTI) in cylindrical geometry initiated by velocity and interface perturbations is investigated analytically through a third-order weakly nonlinear (WN) model. When the initial velocity perturbation is comparable to the interface perturbation, the coupling between them plays a significant role. The difference between the RTI growth initiated only by a velocity perturbation and that only by an interface perturbation in the WN stage is negligibly small. The effects of the mode number on the first three harmonics are discussed respectively. The low-mode number perturbation leads to large amplitudes of RTI growth. The Atwood number and initial perturbation dependencies of the nonlinear saturation amplitude of the fundamental mode are analyzed clearly. When the mode number of the perturbation is large enough, the WN results in planar geometry are recovered.
|
Received: 09 September 2017
Revised: 11 January 2018
Accepted manuscript online:
|
PACS:
|
52.57.Fg
|
(Implosion symmetry and hydrodynamic instability (Rayleigh-Taylor, Richtmyer-Meshkov, imprint, etc.))
|
|
47.20.Ma
|
(Interfacial instabilities (e.g., Rayleigh-Taylor))
|
|
52.35.Py
|
(Macroinstabilities (hydromagnetic, e.g., kink, fire-hose, mirror, ballooning, tearing, trapped-particle, flute, Rayleigh-Taylor, etc.))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.11275031,11475034,11575033,and 11274026) and the National Basic Research Program of China (Grant No.2013CB834100). |
Corresponding Authors:
Wen-Hua Ye
E-mail: ye_wenhua@iapcm.ac.cn
|
Cite this article:
Hong-Yu Guo(郭宏宇), Li-Feng Wang(王立锋), Wen-Hua Ye(叶文华), Jun-Feng Wu(吴俊峰), Wei-Yan Zhang(张维岩) Coupling between velocity and interface perturbations in cylindrical Rayleigh-Taylor instability 2018 Chin. Phys. B 27 055205
|
[11] |
Yang B L, Wang L F, Ye W H and Xue C 2011 Phys. Plasmas 18 072111
|
[1] |
Rayleigh L 1883 Proc. London Math. Soc. 14 170
|
[12] |
Ye W H, Zhang W Y and He X T 2002 Phys. Rev. E 65 057401
|
[2] |
Taylor G 1950 Proc. R. Soc. Lond. A 201 192
|
[13] |
Wang L F, Ye W H, He X T, Zhang W Y, Sheng Z M and Yu M Y 2012 Phys. Plasmas 19 100701
|
[3] |
Zhang Y and Ding N 2008 Chin. Phys. B 17 2994
|
[14] |
Yan R, Betti R, Sanz J, Aluie H, Liu B and Frank A 2016 Phys. Plasmas 23 022701
|
[4] |
Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L and Suter L J 2004 Phys. Plasmas 11 339
|
[15] |
Jacobs J W and Catton I 1988 J. Fluid Mech. 187 329
|
[5] |
Wang L F, Ye W H, He X T, Wu J F, Fan Z F, Xue C, Guo H Y, Miao W Y, Yuan Y T, Dong J Q, Jia G, Zhang J, Li Y J, Liu J, Wang M, Ding Y K and Zhang W Y 2017 Sci. China Phys. Mech. Astron. 60 055201
|
[16] |
Guo H Y, Wang L F, Ye W H, Wu J F and Zhang W Y 2017 Chin. Phys. Lett 34 045201
|
[6] |
Hsing WW, Barnes C W, Beck J B, Hoffman N M, Galmiche D, Richard A, Edwards J, Graham P, Rothman S and Thomas B 1997 Phys. Plasmas 4 1832
|
[17] |
Haan S W 1991 Phys. Fluids B 3 2349
|
[7] |
Guo H Y, Yu X J, Wang L F, Ye W H, Wu J F and Li Y J 2014 Chin. Phys. Lett 31 044702
|
[18] |
Garnier J and Masse L 2005 Phys. Plasmas 12 062707
|
[8] |
Wang L F, Wu J F, Guo H Y, Ye W H, Liu J, Zhang W Y and He X T 2015 Phys. Plasmas 22 082702
|
[19] |
Wang L F, Guo H Y, Wu J F, Ye W H, Liu J, Zhang W Y and He X T 2014 Phys. Plasmas 21 122710
|
[9] |
Mikaelian K O 1982 Phys. Rev. A 26 2140
|
[20] |
Wang L F, Ye W H and Li Y J 2010 Chin. Phys. Lett. 27 025203
|
[10] |
Guo H Y, Wang L F, Ye W H, Wu J F and Zhang W Y 2017 Chin. Phys. Lett. 34 075201
|
[21] |
Wang L F, Wu J F, Fan Z F, Ye W H, He X T, Zhang W Y, Dai Z S, Gu J F and Xue C 2012 Phys. Plasmas 19 112706
|
[11] |
Yang B L, Wang L F, Ye W H and Xue C 2011 Phys. Plasmas 18 072111
|
[22] |
Liu W H, Wang L F, Ye W H and He X T 2012 Phys. Plasmas 19 042705
|
[12] |
Ye W H, Zhang W Y and He X T 2002 Phys. Rev. E 65 057401
|
[23] |
Ryutov D D, Cuneo M E, Herrmann M C, Sinars D B and Slutz S A 2012 Phys. Plasmas 19 062706
|
[13] |
Wang L F, Ye W H, He X T, Zhang W Y, Sheng Z M and Yu M Y 2012 Phys. Plasmas 19 100701
|
[14] |
Yan R, Betti R, Sanz J, Aluie H, Liu B and Frank A 2016 Phys. Plasmas 23 022701
|
[24] |
Betti R, Lobatchev V and McCrory R L 1998 Phys. Rev. Lett. 81 5560
|
[15] |
Jacobs J W and Catton I 1988 J. Fluid Mech. 187 329
|
[25] |
Goncharov V N 1999 Phys. Rev. Lett. 82 2091
|
[26] |
Amendt P, Colvin J D, Ramshaw J D, Robey H F and Landen O L 2003 Phys. Plasmas 10 820
|
[16] |
Guo H Y, Wang L F, Ye W H, Wu J F and Zhang W Y 2017 Chin. Phys. Lett 34 045201
|
[17] |
Haan S W 1991 Phys. Fluids B 3 2349
|
[27] |
Wang L F, Wu J F, Ye W H, Zhang W Y and He X T 2013 Phys. Plasmas 20 042708
|
[18] |
Garnier J and Masse L 2005 Phys. Plasmas 12 062707
|
[28] |
Dittrich T R, Hurricane O A, Callahan D A, Dewald E L, Doppner T, Hinkel D E, Berzak Hopkins L F, LePape S, Ma T, Milovich J, Moreno J C, Patel P K, Park H S, Remington B A and Salmonson J 2014 Phys. Rev. Lett. 112 055002
|
[19] |
Wang L F, Guo H Y, Wu J F, Ye W H, Liu J, Zhang W Y and He X T 2014 Phys. Plasmas 21 122710
|
[20] |
Wang L F, Ye W H and Li Y J 2010 Chin. Phys. Lett. 27 025203
|
[21] |
Wang L F, Wu J F, Fan Z F, Ye W H, He X T, Zhang W Y, Dai Z S, Gu J F and Xue C 2012 Phys. Plasmas 19 112706
|
[22] |
Liu W H, Wang L F, Ye W H and He X T 2012 Phys. Plasmas 19 042705
|
[23] |
Ryutov D D, Cuneo M E, Herrmann M C, Sinars D B and Slutz S A 2012 Phys. Plasmas 19 062706
|
[24] |
Betti R, Lobatchev V and McCrory R L 1998 Phys. Rev. Lett. 81 5560
|
[25] |
Goncharov V N 1999 Phys. Rev. Lett. 82 2091
|
[26] |
Amendt P, Colvin J D, Ramshaw J D, Robey H F and Landen O L 2003 Phys. Plasmas 10 820
|
[27] |
Wang L F, Wu J F, Ye W H, Zhang W Y and He X T 2013 Phys. Plasmas 20 042708
|
[28] |
Dittrich T R, Hurricane O A, Callahan D A, Dewald E L, Doppner T, Hinkel D E, Berzak Hopkins L F, LePape S, Ma T, Milovich J, Moreno J C, Patel P K, Park H S, Remington B A and Salmonson J 2014 Phys. Rev. Lett. 112 055002
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|