| PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Simulation of capacitively coupled Ar/O2 discharges based on global/equivalent circuit model and an extended reaction set |
| Yi Wang(王怡), Wan Dong(董婉), Yi-Fan Zhang(张逸凡), Liu-Qin Song(宋柳琴), and Yuan-Hong Song(宋远红)† |
| Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China |
|
|
|
|
Abstract Radio frequency capacitively coupled plasmas (RF CCPs) operated in Ar/O$_{2}$ gas mixtures which are widely adopted in microelectronics, display, and photovoltaic industry, are investigated based on an equivalent circuit model coupled with a global model. This study focuses on the effects of singlet metastable molecule $\mathrm{O}_{2}\big( {\rm b}^{1}\mathrm{\Sigma }_{\rm g}^{+} \big)$, highly excited Herzberg states $\mathrm{O}_{2}\big( {\mathrm{A}{}^{3}\mathrm{\Sigma }_{\mathrm{u}}^{+}, {\rm A}}{}^{3}\mathrm{\Delta }_{\mathrm{u}},\mathrm{c}^{1}\mathrm{\Sigma }_{\mathrm{u}}^{-} \big)$, and the negative ion $\mathrm{O}_{2}^{-}$, which are usually neglected in simulation studies. Specifically, their impact on particle densities, electronegativity, electron temperature, voltage drop across the sheath, and absorbed power in the discharge is analyzed. The results indicate that $\mathrm{O}_{2}\left( {\rm b}^{1}\mathrm{\Sigma }_{\rm g}^{+} \right)$ and $\mathrm{O}_{2}^{-}$ exhibit relatively high densities in argon-oxygen discharges. While $\mathrm{O}_{2}\big( {\mathrm{A}{}^{3}\mathrm{\Sigma }_{\mathrm{u}}^{+}, {\rm A}}{}^{3}\mathrm{\Delta }_{\mathrm{u}},\mathrm{c}^{1}\mathrm{\Sigma }_{\mathrm{u}}^{-} \big)$ play a critical role in $\mathrm{O}_{2}\left( {\rm b}^{1}\mathrm{\Sigma }_{\rm g}^{+} \right)$ production, especially at higher pressure. The inclusion of these particles reduces the electronegativity, electron temperature, and key species densities, especially the $\mathrm{O}^{-}$ and $\mathrm{O}^{\ast}$ densities. Moreover, the sheath voltage drop, as well as the inductance and resistance of the plasma bulk are enhanced, while the sheath dissipation power and total absorbed power decrease slightly. With the increasing pressure, the influence of these particles on the discharge properties becomes more significant. The study also explores the generation and loss of main neutral species and charged particles within the pressure range of 20 mTorr-100 mTorr (1 Torr = 1.33322$\times10^2$ Pa), offering insights into essential and non-essential reactions for future low-pressure O$_{2}$ and Ar/O$_{2}$ CCP discharge modeling.
|
Received: 12 March 2025
Revised: 16 April 2025
Accepted manuscript online: 07 May 2025
|
|
PACS:
|
52.27.Cm
|
(Multicomponent and negative-ion plasmas)
|
| |
52.65.-y
|
(Plasma simulation)
|
| |
52.80.Pi
|
(High-frequency and RF discharges)
|
| |
82.33.Xj
|
(Plasma reactions (including flowing afterglow and electric discharges))
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12020101005, 12475202, 12347131, and 12405289). |
Corresponding Authors:
Yuan-Hong Song
E-mail: songyh@dlut.edu.cn
|
Cite this article:
Yi Wang(王怡), Wan Dong(董婉), Yi-Fan Zhang(张逸凡), Liu-Qin Song(宋柳琴), and Yuan-Hong Song(宋远红) Simulation of capacitively coupled Ar/O2 discharges based on global/equivalent circuit model and an extended reaction set 2025 Chin. Phys. B 34 085201
|
[1] Qu C, Sakiyama Y, Agarwal P and Kushner M J 2021 J. Vac. Sci. Technol. A 39 052403 [2] Nagamine M, Itoh H, Satake H and Toriumi A 1998 International Electron Devices Meeting pp. 593–596 [3] Fang G Y, Xu L N, Cao Y Q,Wang L G,Wu D and Li A D 2015 Chem. Commun. 51 1341 [4] Kitajima T, Nakano T and Makabe T 2008 J. Vac. Sci. Technol. A 26 1308 [5] Gudmundsson J T and LiebermanMA 2015 Plasma Sources Sci. Technol. 24 035016 [6] Gibson A R and Gans T 2017 Plasma Sources Sci. Technol. 26 115007 [7] Hannesdottir H and Gudmundsson J T 2016 Plasma Sources Sci. Technol. 25 055002 [8] Gudmundsson J T and Snorrason D I 2017 J. Appl. Phys. 122 193302 [9] Gudmundsson J T and Thorsteinsson E G 2007 Plasma Sources Sci. Technol. 16 399 [10] Lichtenberg A J, Vahedi V, Lieberman M A and Rognlien T 1994 J. Appl. Phys. 75 2339 [11] Chung T H 1999 J. Korean Phys. Soc. 34 24 [12] Gudmundsson J T 2004 J. Phys. D: Appl. Phys. 37 2073 [13] O’Brien Jr R J and Myers G H 1970 J. Chem. Phys. 53 3832 [14] Burrow P D 1973 J. Chem. Phys. 59 4922 [15] Proto A and Gudmundsson J T 2018 Plasma Sources Sci. Technol. 27 074002 [16] Thorsteinsson E G and Gudmundsson J T 2010 Plasma Sources Sci. Technol. 19 055008 [17] Toneli D A, Pessoa R S, Roberto M and Gudmundsson J T 2015 J. Phys. D: Appl. Phys. 48 325202 [18] Derzsi A, Vass M, Masheyeva R, Horvath B, Donko Z and Hartmann P 2024 Plasma Sources Sci. Technol. 33 025005 [19] Lim N, Efremov A and Kwon K H 2021 Plasma Chem. Plasma Process. 41 1671 [20] Park G and Lee H J 2020 IEEE International Conference on Plasma Science (ICOPS), p. 589 [21] LeeMY, Jung J, Kim TW, Kim K H, Kwon D C and Chung C W 2020 Phys. Plasmas 27 115002 [22] Nikolić M, Sepulveda I, Gonzalez C, Khogeer N and Fernandez- Monteith M 2021 J. Phys. D: Appl. Phys. 54 275203 [23] Krüger F, Lee H, Nam S K and Kushner M J 2021 Plasma Sources Sci. Technol. 30 085002 [24] Liu J, Zhang Q Z, Liu Y X, Gao F and Wang Y N 2013 J. Phys. D: Appl. Phys. 46 235202 [25] Wang L, Wen D Q, Zhang Q Z, Song Y H, Zhang Y R and Wang Y N 2019 Plasma Sources Sci. Technol. 28 055007 [26] Derzsi A, Bruneau B, Gibson A R, Johnson E, O’Connell D, Gans T, Booth J P and Donkó Z 2017 Plasma Sources Sci. Technol. 26 034002 [27] Gao Z Y, Dong W, Tian C B, Jiang X Z, Dai Z L and Song Y H 2024 Chin. Phys. B 33 095203 [28] Wang L, Wen D Q, Tian C B, Song Y H and Wang Y N 2021 Acta Phys. Sin. 70 095214 (in Chinese) [29] Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing, 2nd edn. (New York: Wiley- Interscience) pp. 1–750 [30] Bora B, Bhuyan H, Favre M, Wyndham E, Chuaqui H and Kakati M 2011 Phys. Plasmas 18 103509 [31] Schmidt F, Mussenbrock T, Trieschmann J 2018 Plasma Sources Sci. Technol. 27 105017 [32] Bora B 2015 Plasma Sources Sci. Technol. 24 054002 [33] Bora B and Soto L 2014 Phys. Plasmas 21 083509 [34] Bai X, Xu H W, Tian C B, Dong W, Song Y H and Wang Y N 2023 Chin. Phys. B 32 125203 [35] Mussenbrock T, Brinkmann R P, Lieberman M A, Lichtenberg A J and Kawamura E 2008 Phys. Rev. Lett. 101 085004 [36] Bora B, Bhuyan H, Favre M, Wyndham E and Chuaqui H 2012 Appl. Phys. Lett. 100 094103 [37] Donkó Z, Schulze J, Czarnetzki U and Luggenhölscher D 2009 Appl. Phys. Lett. 94 131501 [38] Bora B, Bhuyan H, Favre M, Wyndham E and Wong C S 2013 J. Appl. Phys. 113 153301 [39] LiuW,Wen D Q, Zhao S X, Gao F andWang Y N 2015 Plasma Sources Sci. Technol. 24 025035 [40] Thorsteinsson E G and Gudmundsson J T 2009 Plasma Sources Sci. Technol. 19 015001 [41] Thorsteinsson E G and Gudmundsson J T 2010 J. Phys. D: Appl. Phys. 43 115201 [42] Hsu C C, Nierode M A, Coburn J W and Graves D B 2006 J. Phys. D: Appl. Phys. 39 3272 [43] Turner M M 2015 Plasma Sources Sci. Technol. 24 035027 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|