Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 125203    DOI: 10.1088/1674-1056/ace427
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Global simulation of plasma series resonance effect in radio frequency capacitively coupled Ar/O2 plasma

Xue Bai(白雪), Hai-Wen Xu(徐海文), Chong-Biao Tian(田崇彪), Wan Dong(董婉), Yuan-Hong Song(宋远红), and You-Nian Wang(王友年)
Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams(Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China
Abstract  Radio frequency capacitively coupled plasmas (RF CCPs) play a pivotal role in various applications in etching and deposition processes on a microscopic scale in semiconductor manufacturing. In the discharge process, the plasma series resonance (PSR) effect is easily observed in electrically asymmetric and geometrically asymmetric discharges, which could largely influence the power absorption, ionization rate, etc. In this work, the PSR effect arising from geometrically and electrically asymmetric discharge in argon-oxygen mixture gas is mainly investigated by using a plasma equivalent circuit model coupled with a global model. At relatively low pressures, as Ar content (α) increases, the inductance of the bulk is weakened, which leads to a more obvious PSR phenomenon and a higher resonance frequency (ωpsr). When the Ar content is fixed, varying the pressure and gap distance could also have different effects on the PSR effect. With the increase of the pressure, the PSR frequency shifts towards the higher order, but in the case of much higher pressure, the PSR oscillation would be strongly damped by frequent electron-neutral collisions. With the increase of the gap distance, the PSR frequency becomes lower. In addition, electrically asymmetric waveforms applied to a geometrically asymmetric chamber may weaken or enhance the asymmetry of the discharge and regulate the PSR effect. In this work, the Ar/O2 electronegative mixture gas is introduced in a capacitive discharge to study the PSR effect under geometric asymmetry effect and electrical asymmetry effect, which can provide necessary guidance in laboratory research and current applications.
Keywords:  capacitively coupled Ar/O2 plasma      PSR effect      plasma equivalent circuit model      global model  
Received:  26 April 2023      Revised:  26 June 2023      Accepted manuscript online:  05 July 2023
PACS:  52.65.-y (Plasma simulation)  
  52.65.Ww (Hybrid methods)  
  52.80.Pi (High-frequency and RF discharges)  
  52.80.Tn (Other gas discharges)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.12020101005 and 11975067).
Corresponding Authors:  Yuan-Hong Song     E-mail:  songyh@dlut.edu.cn

Cite this article: 

Xue Bai(白雪), Hai-Wen Xu(徐海文), Chong-Biao Tian(田崇彪), Wan Dong(董婉), Yuan-Hong Song(宋远红), and You-Nian Wang(王友年) Global simulation of plasma series resonance effect in radio frequency capacitively coupled Ar/O2 plasma 2023 Chin. Phys. B 32 125203

[1] Chu P K, Chen J Y, Wang L P and Huang N 2002 Mater. Sci. Eng. R Reports 36 143
[2] Ostrikov K 2005 Rev. Mod. Phys. 77 489
[3] Wang L, Wen D Q, Tian C B, Song Y H and Wang Y N 2021 Acta Phys. Sin. 70 095214 (in Chinese)
[4] Wu L C, Yin G Q, Meng X G, Zhou Y Y and Wang J J 2020 Nucl. Fusion Plasma Phys. 40 372
[5] Heil B G, Czarnetzki U, Brinkmann R P and Mussenbrock T 2008 J. Appl. Phys. 41 165202
[6] Lafleur T 2016 Plasma Sources Sci. Technol. 25 013001
[7] Wang L, Hartmann P, Donkó Z, Song Y H and Schulze J 2021 Plasma Sources Sci. Technol. 30 054001
[8] Cao M, Lu Y, Cheng J and Ji L 2016 Jpn. J. Appl. Phys. 55 096201
[9] Bora B, Bhuyan H, Favre M, Wyndham E and Wong C S 2013 J. Appl. Phys. 113 153301
[10] Bora B, Soto L 2014 Phys. Plasmas 21 083509
[11] Zhao K, Wen D Q, Liu Y X, Lieberman M A, Economou D J and Wang Y N 2019 Phys. Rev. Lett. 122 185002
[12] Donkó Z, Schulze J, Czarnetzki U and Luggenhölscher D 2009 Appl. Phys. Lett. 94 131501
[13] Mussenbrock T, Brinkmann R P, Lieberman M A, Lichtenberg A J and Kawamura E 2008 Phys. Rev. Lett. 101 085004
[14] Lieberman M A, Lichtenberg A J, Kawamura E, Mussenbrock T and Brinkmann R P 2008 Phys. Plasmas 15 063505
[15] Schmidt F, Mussenbrock T and Trieschmann J 2018 Plasma Sources Sci. Technol. 27 105017
[16] Schmidt F, Schulze J, Johnson E, Booth J P, Keil D, French D M, Trieschmann J and Mussenbrock T 2019 Plasma Sources Sci. Technol. 27 095012
[17] Xu Q, Li Y X, Li X N, Wang J B, Yang F and Yang Y 2017 Mod. Phys. Lett. B 31 1750055
[18] Cao L Y, Ma X P, Deng L L, Lu M T and Xin Y 2021 Acta Phys. Sin. 70 115204 (in Chinese)
[19] Jiang X Z, Li W liang, Wumaier T and Yao H Bin 2019 Chem. Phys. Lett. 730 472
[20] Babaeva N Y, Lee J K, Shon J W and Hudson E A 2005 J. Vac. Sci. Technol. A. 23 699
[21] Gudmundsson J T and Thorsteinsson E G. 2007 Plasma Sources Sci. Technol. 16 399
[22] Hong B S, Yuan T, Zou S, Tang Z H, Xu D S, Yu Y Q, Wang X S and Xin Y 2013 Acta Phys. Sin. 62 115202 (in Chinese)
[23] Bora B 2015 Plasma Sources Sci. Technol. 24 054002
[24] Bora B, Bhuyan H, Favre M, Wyndham E and Chuaqui H 2012 Appl. Phys. Lett. 100 094103
[25] Liu W, Wen D Q, Zhao S X, Gao F and Wang Y N 2015 Plasma Sources Sci. Technol. 24 025035
[26] Lafleur T, Chabert P and Booth J P 2014 Plasma Sources Sci. Technol. 23 035010
[27] Lafleur T and Booth J P 2012 J. Phys. D: Appl. Phys. 45 395203
[1] Air breakdown induced by the microwave with two mutually orthogonal and heterophase electric field components
Pengcheng Zhao(赵朋程), Lixin Guo(郭立新). Chin. Phys. B, 2017, 26(9): 099201.
No Suggested Reading articles found!