Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(8): 085202    DOI: 10.1088/1674-1056/add4e0
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Influence of grid on the extraction characteristics of different charged ions in mixed ion beams

Ao Xu(徐翱)†, Xiang Wan(万翔), and Pingping Gan(甘娉娉)
Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621999, China
Abstract  The extraction characteristics of multi-charged ions produced by ion sources are important for some useful applications. In this paper, the extraction process of Cu$^{+}$, Cu$^{2+}$, Cu$^{3+}$, and Cu$^{4+}$ mixed ions is simulated by setting ideal physical parameters in a two-dimensional particle-in-cell (PIC) code, and the evolution characteristics of density and velocity distributions of different charged ions during plasma (density about 10$^{15}$ m$^{-3}$) motion and extraction are presented. Besides, the effects of grid thickness and grid aperture on the motion behavior of different charged ions and the extracted ion current are analyzed. The results showed that the ion diffusion increases with the increase of the ion charge, and higher charged ions are more likely to be affected by the grid. This provides support for further understanding of the extraction characteristics of multi-charged mixed ion beams.
Keywords:  ion extraction      grid      multi-charged ion      density distribution  
Received:  26 February 2025      Revised:  09 April 2025      Accepted manuscript online:  07 May 2025
PACS:  52.65.-y (Plasma simulation)  
  52.65.Rr (Particle-in-cell method)  
  29.25.-t (Particle sources and targets)  
  29.25.Ni (Ion sources: positive and negative)  
Fund: Project supported by the Presidential Foundation of China Academy of Engineering Physics (Grant No. YZJJZQ2022016), and the National Natural Science Foundation of China (Grant No. 52207177).
Corresponding Authors:  Ao Xu     E-mail:  xuao@caep.cn

Cite this article: 

Ao Xu(徐翱), Xiang Wan(万翔), and Pingping Gan(甘娉娉) Influence of grid on the extraction characteristics of different charged ions in mixed ion beams 2025 Chin. Phys. B 34 085202

[1] Aston G, and Wibur P J 1981 J. Appl. Phys. 52 2614
[2] Whealton J H, Jaeger E F and Whitson J C 1977 Rev. Sci. Instrum. 48 829
[3] Wang Y T, Sun X L, Luo L Y, Zhang Z M, Li H P, Jiang D J and Zhou M S 2023 Chin. Phys. B 32 095201
[4] Nakano M, Yamamoto N, I Funaki and Ohkawa Y 2018 Tran. JSASS Aerospace Tech. Japan 16 98
[5] Spadtke P 2018 Rev. Sci. Instrum. 89 081101
[6] Keller R 1990 Nuclear Instruments and Methods in Physics Research A: Accelerators, Detectors, Associated Equipment 298 247
[7] Soliman B A, Abdelrahman M M, Helal A G and Abdelsalam F W 2011 Chin. Phys. C 35 83
[8] Singh P and Maiti N 2024 Phys. Scr. 99 025609
[9] Lee M, Kim J Y, Kim Y, Hwang Y S and Chung K J 2023 IEEE Trans. Plasma Sci. 51 1404
[10] Svotina V V and Khartov S A 2024 Acta Astronautica 215 653
[11] Dorf M A, Sidorov A V, Zorin V G, Bohanov A F, Vodopyanov A V, Izotov I V, Razin S V and Skalyga V A 2007 J. Appl. Phys. 102 054504
[12] Chen J, Fu T Z, Guo H, Li H P, Jiang D J and Zhou M S 2019 Plasma Sci. Technol. 21 045402
[13] Hatamil M M and Kourakis I 2022 Sci. Rep. 12 6905
[14] Xu A, Gan P P, Wan X and Shi Y J 2024 Chin. Phys. B 33 095202
[15] Li H L and Sun A B 2021 Comput. Phys. Commun. 259 107629
[16] Xu A, Gan P P, Shi Y J and Chen L 2024 Chin. Phys. B 33 045203
[17] Kosonen S T, Kalvas T, Tarvainen O and Toivanen V 2022 J. Phys.: Conf. Ser. 2244 012079
[18] Lafleur T and Aanesland A 2014 Phys. Plasmas 21 123506
[19] Shen Z, Sun L T, Jia Z H, Fang X, Qian C and Zhao H W 2022 J. Phys.: Conf. Ser. 2244 012090
[20] Wei H L, Cao J Y, Rao J, Lei G J, Jiang S F, Liu H, Yu L M, Xie W M, Li M, Yang X F, Zou G Q, Lu D L and Duan X R 2012 Rev. Sci. Instrum. 83 023302
[21] Toivanen V, Steczkiewicz O, Tarvainen O, Ropponen T, Arje J and Koivisto H 2010 Nuclear Instruments and Methods in Physics Research B: Beam Interactions with Materials and Atoms 268 1508
[22] Xu A, Wan X, Gan P P and Shi Y J 2025 IEEE Trans. Plasma Sci. 53 252
[23] Baalrud S D, Scheiner B, Yee B T, Hopkins M M and Barnat E 2020 Plasma Sour. Sci. Technol. 29 053001
[24] Beving L P, Hopkins M M and Baalrud S D 2022 Plasma Sour. Sci. Technol. 31 084009
[25] Benedikt J, Kersten H and Piel A 2021 Plasma Sources Science and Technology 30 033001
[26] Alekseev N, Balabaev A, Khrisanov I, Kulevoy T, Losev A, Satov Y, Shumshurov A and Vasilyev A 2020 Rev. Sci. Instrum. 91 033304
[27] Lu C, Zhao Y D, Wan J, Chu Y C, Zheng L and Cao Y 2019 International Journal of Aerospace Engineering 2019 8916303
[28] Chen M L, Sun A B, Chen C and Xia G Q 2018 Chinese Journal of Aeronautics 31 719
[29] Sun M M, Long J F, Guo W L, Liu C and Zhao Y 2023 Plasma Sci. Technol. 25 015509
[30] Laya N and Xu K G 2022 AIAA SCITECH 2022 Forum, January 3–7, 2022, San Diego, CA & Virtual, USA
[31] Rovang D C and Wilbur P J 1985 Journal of Propulsion and Power 1 172
[32] Zhang S Q, Li A J, Zheng Y Q and Zhang D S 2019 Appl. Math. Mech. (English edition) 40 1589
[33] Lu C, Wang Y L, Geng H, Xia G Q and Li J 2022 IEEE Trans. Plasma Sci. 50 50
[34] Rahaman S E, Singh A K, Shukla S K and Barik R K 2017 IEEE Trans. Plasma Sci. 45 2974
[35] Kirtsev D V, Akimova A A, Galchuk A V, Klopenkov R M, Mudrolyubov V G and Osina Y K 2023 Phys. Particles Nucl. Lett. 20 796
[36] Kato Y, Sugiyama S and Ishii S 2002 Rev. Sci. Instrum. 73 601
[37] Anderson O A and Logan B G 1998 Rev. Sci. Instrum. 69 1106
[38] Tskhakaya D, Matyash K, Schneider R and Taccogna F 2007 Contributions to Plasma Physics 47 563
[39] Fierro A, Moore C H, Yee B and Hopkins M 2018 Plasma Sour. Sci. Technol. 27 105008
[40] Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing, 2nd edn. (John Wiley & Sons, Inc.: New Jersey) p. 302
[1] Influence of ion species on extraction characteristics of mixed ion beams
Ao Xu(徐翱), Pingping Gan(甘娉娉), Xiang Wan(万翔), and Yuanjie Shi(石元杰). Chin. Phys. B, 2024, 33(9): 095202.
[2] Global dust density in two-dimensional complex plasma
Yi-Zhen Zhao(赵逸真), Song-Fen Liu(刘松芬), Wei Kong(孔伟), and Fang Yang(杨芳). Chin. Phys. B, 2024, 33(6): 065201.
[3] Geometric properties of the first singlet S-wave excited state of two-electron atoms near the critical nuclear charge
Tong Chen(陈彤), Sanjiang Yang(杨三江), Wanping Zhou(周挽平), Xuesong Mei(梅雪松), and Haoxue Qiao(乔豪学). Chin. Phys. B, 2024, 33(10): 103101.
[4] Speeding-up direct implicit particle-in-cell simulations in bounded plasma by obtaining future electric field through explicitly propulsion of particles
Haiyun Tan(谭海云), Tianyuan Huang(黄天源), Peiyu Ji(季佩宇), Mingjie Zhou(周铭杰), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(12): 125204.
[5] Data encryption based on a 9D complex chaotic system with quaternion for smart grid
Fangfang Zhang(张芳芳), Zhe Huang(黄哲), Lei Kou(寇磊), Yang Li(李扬), Maoyong Cao(曹茂永), and Fengying Ma(马凤英). Chin. Phys. B, 2023, 32(1): 010502.
[6] Origin of the low formation energy of oxygen vacancies in CeO2
Han Xu(许涵), Tongtong Shang(尚彤彤), Xuefeng Wang(王雪锋), Ang Gao(高昂), and Lin Gu(谷林). Chin. Phys. B, 2022, 31(10): 107102.
[7] Serverless distributed learning for smart grid analytics
Gang Huang(黄刚), Chao Wu(吴超), Yifan Hu(胡一帆), and Chuangxin Guo(郭创新). Chin. Phys. B, 2021, 30(8): 088802.
[8] Electron density distribution of LiMn2O4 cathode investigated by synchrotron powder x-ray diffraction
Tongtong Shang(尚彤彤), Dongdong Xiao(肖东东), Qinghua Zhang(张庆华), Xuefeng Wang(王雪锋), Dong Su(苏东), and Lin Gu(谷林). Chin. Phys. B, 2021, 30(7): 078202.
[9] Theoretical analysis and numerical simulation of acoustic waves in gas hydrate-bearing sediments
Lin Liu(刘琳), Xiu-Mei Zhang(张秀梅), and Xiu-Ming Wang(王秀明). Chin. Phys. B, 2021, 30(2): 024301.
[10] Hybrid-PIC/PIC simulations on ion extraction by electric field in laser-induced plasma
Xiao-Yong Lu(卢肖勇), Cheng Yuan(袁程), Xiao-Zhang Zhang(张小章), Zhi-Zhong Zhang(张志忠). Chin. Phys. B, 2020, 29(4): 045201.
[11] An improved global-direction stencil based on the face-area-weighted centroid for the gradient reconstruction of unstructured finite volume methods
Ling-Fa Kong(孔令发), Yi-Dao Dong(董义道)†, Wei Liu(刘伟), and Huai-Bao Zhang(张怀宝). Chin. Phys. B, 2020, 29(10): 100203.
[12] Novel two-directional grid multi-scroll chaotic attractors based on the Jerk system
Peng-Fei Ding(丁鹏飞), Xiao-Yi Feng(冯晓毅)†, and Cheng-Mao Wu(吴成茂). Chin. Phys. B, 2020, 29(10): 108202.
[13] Equivalent magnetic dipole method used to design gradient coil for unilateral magnetic resonance imaging
Zheng Xu(徐征), Xiang Li(李想), Pan Guo(郭盼), Jia-Min Wu(吴嘉敏). Chin. Phys. B, 2018, 27(5): 058702.
[14] Hybrid sub-gridding ADE-FDTD method of modeling periodic metallic nanoparticle arrays
Tu-Lu Liang(梁图禄), Wei Shao(邵维), Xiao-Kun Wei(魏晓琨), Mu-Sheng Liang(梁木生). Chin. Phys. B, 2018, 27(10): 100204.
[15] Electronic states and spin-filter effect in three-dimensional topological insulator Bi2Se3 nanoribbons
Genhua Liu(刘根华), Pingguo Xiao(肖平国), Piaorong Xu(徐飘荣), Huiying Zhou(周慧英), Guanghui Zhou(周光辉). Chin. Phys. B, 2018, 27(1): 017304.
No Suggested Reading articles found!