Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(8): 084202    DOI: 10.1088/1674-1056/add4f7
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Quasi-two-dimensional isotropic laser cooling of atoms for quantum sensing

Xiao Zhang(张孝)1,2,†,‡, Yi Song(宋屹)1,2,†, Yuan Sun(孙远)1,2, and Liang Liu(刘亮)1,2,§
1 CAS Key Laboratory of Quantum Optics and Aerospace Laser Technology and Systems Department, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences (CAS), Shanghai 201800, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Isotropic laser cooling (ILC) is widely recognized for its distinct advantages and demonstrates significant potential in quantum precision measurements and quantum sensing technologies. The morphology and density distribution of the cold atomic cloud generated by ILC are strongly influenced by the distribution of cooling light and the structural geometry of the cavity, making precise characterization and optimization of cold atom distribution essential for practical applications. In this paper, we present an innovative flat diffuse cavity design with the dimensions approximating a quasi-two-dimensional configuration, which generates a sheet-like isotropic laser field inside the cavity through diffuse reflections. We thoroughly characterized the system's performance under different optical parameter settings. A two-dimensional (2D) movable detection system was employed to detect the quasi-two-dimensional distribution of cold atoms. These results demonstrate the ability of ILC to produce diverse morphological and density distributions of cold atoms, which we anticipate will be suitable for quantum sensing.
Keywords:  quasi-two-dimensional      isotropic laser cooling      quantum sensing  
Received:  19 February 2025      Revised:  30 April 2025      Accepted manuscript online:  07 May 2025
PACS:  42.50.-p (Quantum optics)  
  37.10.De (Atom cooling methods)  
  37.10.Mn (Slowing and cooling of molecules)  
  32.90.+a (Other topics in atomic properties and interactions of atoms with photons)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 92165107), the China Postdoctoral Science Foundation (Grant No. 2022M723270), and the National Defense Basic Scientific Research Pogram of China.
Corresponding Authors:  Xiao Zhang, Liang Liu     E-mail:  zhangxiao@siom.ac.cn;liang.liu@siom.ac.cn

Cite this article: 

Xiao Zhang(张孝), Yi Song(宋屹), Yuan Sun(孙远), and Liang Liu(刘亮) Quasi-two-dimensional isotropic laser cooling of atoms for quantum sensing 2025 Chin. Phys. B 34 084202

[1] Hagley EW, Deng L, Kozuma M, Trippenbach M, Band Y B, Edwards M, Doery M, Julienne P S, Helmerson K, Rolston S L and Phillips W D 1999 Phys. Rev. Lett. 83 3112
[2] O’Hara K M, Hemmer S L, Gehm M E, Granade S R and Thomas J E 2002 Science 298 2179
[3] Liu L, Lü D S, Chen W B, Li T, Qu Q Z, Wang B, Li L, Ren W, Dong Z R, Zhao J B, Xia W B, Zhao X, Ji J W, Ye M F, Sun Y G, Yao Y Y, Song D, Liang Z G, Hu S J, Yu D H, Hou X, Shi W, Zang H G, Xiang J F,Peng X K and Wang Y Z 2018 Nat. Commun. 9 2760
[4] Lü D S, RenW, Sun Y, Li T, Qu Q Z,Wang B, Li L, Zhao J B, Zhao X, Ji J W, Ye M F, Xiang J F, Chen W B, Wang Y Z and Liu L 2022 Natl. Sci. Rev. 10 nwac180
[5] Deng S M D, Ren W, Xiang J F, Zhao J B, Li L, Zhang D, Wan J Y, Meng Y L, Jiang X J, Li T, Liu L and Lü D S 2024 Chin. Phys. B 33 070602
[6] Guillot E, Pottie P E and Dimarcq N 2001 Opt. Lett. 26 1639
[7] Wang X C, Cheng H D, Xiao L, Zheng B C, Meng Y L, Liu L and Wang Y Z 2012 Chin. Opt. Lett. 10 080201
[8] Langlois M, Sarlo L D, Holleville D, Dimarcq N, Schaff J F and Bernon S 2018 Phys. Rev. Appl. 10 064007
[9] Yin Y R, Xu A N, Peng J and Liu B 2025 Chin. Phys. B 34 023401
[10] Ouyang X C, Yang BW, Hu Q Q, Qi H H, Xiao L,Wan J Y and Cheng H D 2021 Phys. Rev. A 103 043118
[11] Meng Y L, Jiang X J, Wu J, Ye M F, Cheng H D, Li L and Liu L 2022 Front. Phys. 10
[12] Wang X, Sun Y and Liu L 2021 Opt. Express 29 43435
[13] WangWL, Deng J Lan andWang Y Z 2015 J. Opt. Soc. Am. B 32 2441
[14] Wang X, Sun Y and Liu L 2022 Photon. Res. 10 1947
[15] Esnault F X, Holleville D, Rossetto N, Guerandel S and Dimarcq N 2010 Phys. Rev. A 82 033436
[16] Liu P, Meng Y L, Wan J Y, Wang X M, Wang Y N, Xiao L, Cheng H D and Liu L 2015 Phys. Rev. A 92 062101
[17] Wan J Y, Wang X, Zhang X, Meng Y L, Wang W L, Sun Y and Liu L 2022 Phys. Rev. A 105 033110
[18] Meng Y L, Cheng H D, Zheng B C,Wang X C, Xiao L and Liu L 2013 Chin. Phys. Lett. 30 063701
[19] Meng Y L, Cheng H D, Liu P, Zheng B C, Xiao L, Wan J Y, Wang X M and Liu L 2014 Phys. Lett. A 378 2034
[20] Sun Y 2024 Sci. China-Phys. Mech. Astron. 67 120311
[21] Wang X C, Cheng H D, Xiao L, Zheng B C, Meng Y L, Liu L and Wang Y Z 2018 Chin. Phys. Lett. 29 023701
[22] Zhang X, Qin Q, Fan X Y, Yang B W, Wang X, Wang W L, Sun Y and Liu L 2024 Rev. Sci. Instrum. 95 064703
[23] Steane A M, Chowdhury M and Foot C J 1992 J. Opt. Soc. Am. B 9 2142
[24] Sun X L, Zhang J W, Cheng P F, Zuo Y N and Wang L J 2018 Chin. Phys. B 27 023101
[25] ZhangWZ,Wang X C, Cheng H D, Xiao L, Liu L andWang Y Z 2009 Chin. Phys. Lett. 26 083703
[26] Huang J Q, Zhang JW,Wang S G,Wang Z B andWang L J 2015 Chin. Phys. B 24 113701
[27] Wang X, Sun Y, Cheng H D, Wan J Y, Meng Y L, Xiao L and Liu L 2020 Phys. Rev. Appl. 14 024030
[28] Cheng H D, ZhangWZ, Ma H Y, Liu L andWang Y Z 2009 Phys. Rev. A 79 023407
[29] Crowther B G 1996 Appl. Opt. 35 5880
[30] Zheng B C, Cheng H D, Meng Y L, Liu P, Wang X M, Xiao L, Wan J Y and Liu L 2014 Mod. Phys. Lett. B 28 1450116
[1] Phase-modulated dynamical decoupling sequences robust to systematic amplitude error
Sijie Chen(陈思婕), Guanxing Chen(陈官幸), Jiahao Huang(黄嘉豪), Peiliang Liu(刘培亮), Min Zhuang(庄敏), and Chaohong Lee(李朝红). Chin. Phys. B, 2025, 34(7): 074202.
[2] Enhanced measurement precision with continuous interrogation during dynamical decoupling
Jun Zhang(张军), Peng Du(杜鹏), Lei Jing(敬雷), Peng Xu(徐鹏), Li You(尤力), and Wenxian Zhang(张文献). Chin. Phys. B, 2024, 33(3): 030301.
[3] On-chip quantum NOON state sensing for temperature and humidity
Weihong Luo(罗伟宏), Chao Wu(吴超), Yuxing Du(杜昱星), Chang Zhao(赵畅), Miaomiao Yu(余苗苗), Pingyu Zhu(朱枰谕), Kaikai Zhang(张凯凯), and Ping Xu(徐平). Chin. Phys. B, 2024, 33(10): 100305.
[4] Orientation determination of nitrogen-vacancy center in diamond using a static magnetic field
Yangpeng Wang(王杨鹏), Rujian Zhang(章如健), Yan Yang(杨燕), Qin Wu(吴琴), Zhifei Yu(于志飞), and Bing Chen(陈冰). Chin. Phys. B, 2023, 32(7): 070301.
[5] Enhanced phase sensitive amplification towards improving noise immunity
Hui Guo(郭辉), Zhi Li(李治), Hengxin Sun(孙恒信), Kui Liu(刘奎), and Jiangrui Gao(郜江瑞). Chin. Phys. B, 2023, 32(5): 054204.
[6] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
[7] Quantum noise of a harmonic oscillator under classical feedback control
Feng Tang(汤丰), Nan Zhao(赵楠). Chin. Phys. B, 2020, 29(9): 090303.
[8] Electron mobility in the linear region of AlGaN/AlN/GaN heterostructure field-effect transistor
Yu Ying-Xia (于英霞), Lin Zhao-Jun (林兆军), Luan Chong-Biao (栾崇彪), Wang Yu-Tang (王玉堂), Chen Hong (陈弘), Wang Zhan-Guo (王占国). Chin. Phys. B, 2013, 22(6): 067203.
No Suggested Reading articles found!