Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(8): 084212    DOI: 10.1088/1674-1056/21/8/084212
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Effect of different metal-backed waveguides on amplified spontaneous emission

Zhang Bo (张波), Hou Yan-Bing (侯延冰), Lou Zhi-Dong (娄志东), Teng Feng (滕枫), Liu Xiao-Jun (刘小君), Hu Bing (胡兵), Meng Ling-Chuan (孟令川), Wu Wen-Bin (武文彬 )
Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China
Abstract  We investigate the effect of metallic electrode on the ability for poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene vinylene] (MEH-PPV) film to undergo amplified spontaneous emission (ASE). The threshold of the device with Ag cladding is about 10 times greater than that of a metal-free device, but metal such as Al completely shuts off ASE. The ASE recurs when a thin spacer layer, such as a few nanometers of SiO2, is introduced between the MEH-PPV film and the Al cladding. Compared with the Cu or Al electrode, the Ag cladding is most suited to serve as an electrode with its low optical loss due to its high work-function and reflectivity.
Keywords:  polymer semiconductor      amplified spontaneous emission      electrode  
Received:  29 November 2011      Revised:  23 February 2012      Accepted manuscript online: 
PACS:  42.70.-a (Optical materials)  
  78.45.+h (Stimulated emission)  
  78.66.-w (Optical properties of specific thin films)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60978061, 60777026, 60677007, 60825407, and 61036007), the Program for New Century Excellent Talents in University, China (Grant No. NCET-08-0717), the Beijing Municipal Science and Technology Commission (Grant Nos. Z090803044009001 and 4102046), and the Program of Introducing Talents of Discipline to Universities, China (Grant No. B08002).
Corresponding Authors:  Hou Yan-Bing     E-mail:  ybhou@bjtu.edu.cn

Cite this article: 

Zhang Bo (张波), Hou Yan-Bing (侯延冰), Lou Zhi-Dong (娄志东), Teng Feng (滕枫), Liu Xiao-Jun (刘小君), Hu Bing (胡兵), Meng Ling-Chuan (孟令川), Wu Wen-Bin (武文彬 ) Effect of different metal-backed waveguides on amplified spontaneous emission 2012 Chin. Phys. B 21 084212

[1] Hide F, Díaz-García M A, Schwartz B J, Andersson M R, Pei Q and Heeger A J 1996 Science 273 1833
[2] McGehee M D, Gupta R, Veenstra S, Miller E K, Díaz-García M A and Heeger A J 1998 Phys. Rev. B 58 7035
[3] McGehee M D and Heeger A J 2000 Adv. Mater. 12 1655
[4] Samuel I D W and Turnbull G A 2004 Mater. Today 7 28
[5] Tessler N 1999 Adv. Mater. 11 363
[6] Xia R, Heliotis G, Hou Y and Bradley D D C 2003 Org. Electron. 4 165
[7] Xia R, Heliotis G, Stavrinou P N and Bradley D D C 2005 Appl. Phys. Lett. 87 031104
[8] Turnbull G A, Krauss T F, Barnes W L and Samuel I D W 2001 Synth. Met. 121 1757
[9] Zhang B, Hou Y, Teng F, Lou Z, Liu X and Wang Y 2010 Appl. Phys. Lett. 96 103303
[10] Andrew P, Turnbull G A, Samuel I D W and Barnes W L 2002 Appl. Phys. Lett. 81 954
[11] Villers B T and Schwartz B J 2007 Appl. Phys. Lett. 90 091106
[12] Reufer M, Riechel S, Lupton J M, Feldmann J, Lemmer U, Schneider D, Benstem T, Dobbertin T, Kowalsky W, Gombert A, Forberich K, Wittwer M and Scherf U 2004 Appl. Phys. Lett. 84 3262
[13] Zhang D, Deng Z, Wang Q, Li B, Chen S, Wang Y, Liu Y and Ma D 2010 Appl. Opt. 49 315
[14] Park J Y, Srdanov V I, Heeger A J, Lee C H and Park Y W 1999 Synth. Met. 106 35
[15] Stehr J, Crewett J, Schindler F, Sperling R, Plessen G, Lemmer U, Lupton J M, Klar T A, Feldmann J, Holleitner A W, Forster M and Scherf U 2003 Adv. Mater. 15 1726
[16] Zhang S M, Zhang D K and Ma D G 2008 Chin. Phys. Lett. 25 1690
[17] Zhang B, Hou Y, Teng F, Lou Z, Liu X, Hu B and Wu W 2011 Chin. Phys. B 20 077803
[18] Born M and Wolf E 1999 Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light 7th edn. (Cambridge: Cambridge University Press) p. 623
[1] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[2] Loss prediction of three-level amplified spontaneous emission sources in radiation environment
Shen Tan(谭深), Yan Li(李彦), Hao-Shi Zhang(张浩石), Xiao-Wei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(6): 064211.
[3] Pump pulse characteristics of quasi-continuous-wave diode-side-pumped Nd:YAG laser
Zexin Song(宋泽鑫), Qi Bian(卞奇), Yu Shen(申玉), Keling Gong(龚柯菱), Nan Zong(宗楠), Qingshuang Zong(宗庆霜), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(5): 054208.
[4] Three-dimensional vertical ZnO transistors with suspended top electrodes fabricated by focused ion beam technology
Chi Sun(孙驰), Linyuan Zhao(赵林媛), Tingting Hao(郝婷婷), Renrong Liang(梁仁荣), Haitao Ye(叶海涛), Junjie Li(李俊杰), and Changzhi Gu(顾长志). Chin. Phys. B, 2022, 31(1): 016801.
[5] High efficiency ETM-free perovskite cell composed of CuSCN and increasing gradient CH3NH3PbI3
Tao Wang(汪涛), Gui-Jiang Xiao(肖贵将), Ren Sun(孙韧), Lin-Bao Luo(罗林保), and Mao-Xiang Yi(易茂祥). Chin. Phys. B, 2022, 31(1): 018801.
[6] Analysis on diffusion-induced stress for multi-layer spherical core-shell electrodes in Li-ion batteries
Siyuan Yang(杨思源), Chuanwei Li(李传崴), Zhifeng Qi(齐志凤), Lipan Xin(辛立攀), Linan Li(李林安), Shibin Wang(王世斌), and Zhiyong Wang(王志勇). Chin. Phys. B, 2021, 30(9): 098201.
[7] Stabilization of formamidinium lead iodide perovskite precursor solution for blade-coating efficient carbon electrode perovskite solar cells
Yu Zhan(占宇), Weijie Chen(陈炜杰), Fu Yang(杨甫), and Yaowen Li(李耀文). Chin. Phys. B, 2021, 30(8): 088803.
[8] Silicon micropillar electrodes of lithiumion batteries used for characterizing electrolyte additives
Fangrong Hu(胡放荣), Mingyang Zhang(张铭扬), Wenbin Qi(起文斌), Jieyun Zheng(郑杰允), Yue Sun(孙悦), Jianyu Kang(康剑宇), Hailong Yu(俞海龙), Qiyu Wang(王其钰), Shijuan Chen(陈世娟), Xinhua Sun(孙新华), Baogang Quan(全保刚), Junjie Li(李俊杰), Changzhi Gu(顾长志), and Hong Li(李泓). Chin. Phys. B, 2021, 30(6): 068202.
[9] Peculiar diffusion behavior of AlCl4 intercalated in graphite from nanosecond-long molecular dynamics simulations
Qianpeng Wang(王乾鹏), Daye Zheng(郑大也), Lixin He(何力新), and Xinguo Ren(任新国). Chin. Phys. B, 2021, 30(10): 107102.
[10] Experimental investigation of electrode cycle performance and electrochemical kinetic performance under stress loading
Zi-Han Liu(刘子涵), Yi-Lan Kang(亢一澜), Hai-Bin Song(宋海滨), Qian Zhang(张茜), and Hai-Mei Xie(谢海妹). Chin. Phys. B, 2021, 30(1): 016201.
[11] Research of influence of the additional electrode on Hall thruster plume by particle-in-cell simulation
Xi-Feng Cao(曹希峰), Hui Liu(刘辉), Da-Ren Yu(于达仁). Chin. Phys. B, 2020, 29(9): 095204.
[12] SiO2 nanoparticle-regulated crystallization of lead halide perovskite and improved efficiency of carbon-electrode-based low-temperature planar perovskite solar cells
Zerong Liang(梁泽荣), Bingchu Yang(杨兵初), Anyi Mei(梅安意), Siyuan Lin(林思远), Hongwei Han(韩宏伟), Yongbo Yuan(袁永波), Haipeng Xie(谢海鹏), Yongli Gao(高永立), Conghua Zhou(周聪华). Chin. Phys. B, 2020, 29(7): 078401.
[13] Hybrid-PIC/PIC simulations on ion extraction by electric field in laser-induced plasma
Xiao-Yong Lu(卢肖勇), Cheng Yuan(袁程), Xiao-Zhang Zhang(张小章), Zhi-Zhong Zhang(张志忠). Chin. Phys. B, 2020, 29(4): 045201.
[14] Failure analysis with a focus on thermal aspect towards developing safer Na-ion batteries
Yuqi Li(李钰琦), Yaxiang Lu(陆雅翔), Liquan Chen(陈立泉), Yong-Sheng Hu(胡勇胜). Chin. Phys. B, 2020, 29(4): 048201.
[15] Review on electrode-level fracture in lithium-ion batteries
Bo Lu(吕浡), Chengqiang Ning(宁成强), Dingxin Shi(史定鑫), Yanfei Zhao(赵炎翡), Junqian Zhang(张俊乾). Chin. Phys. B, 2020, 29(2): 026201.
No Suggested Reading articles found!