Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(10): 104206    DOI: 10.1088/1674-1056/19/10/104206
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Measurement of the carrier recovery time in SOA based on four-wave mixing on narrow-band ASE spectrum

Cheng Cheng(程乘), Zhang Xin-Liang(张新亮)†ger, Zhang Yu(张羽), Liu Lei(刘磊), and Huang De-Xiu(黄德修)
Wuhan National Laboratory for Optoelectronics, School of Optoelectronics Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  Carrier recovery time is a key parameter that determines the performance of a semiconductor optical amplifier (SOA). A measurement method of carrier recovery time in SOA based on a nearly degenerate four-wave mixing of narrow-band amplified spontaneous emission (ASE) spectra is presented. The results show the carrier times are 50.2, 44.6, and 23.6 ps when the injected currents are 120, 180, and 240 mA, respectively, which are in agreement with the nominal values of the sample.
Keywords:  amplified spontaneous emission      narrow band      nearly degenerate four-wave mixing      semiconductor optical amplifier  
Received:  22 December 2009      Revised:  24 May 2010      Accepted manuscript online: 
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  42.60.Lh (Efficiency, stability, gain, and other operational parameters)  
  42.62.Eh (Metrological applications; optical frequency synthesizers for precision spectroscopy)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
Fund: Project supported by National High Technology Research and Development Program of China (Grant No. 2006AA03Z414), the National Natural Science Foundation of China (Grant No. 60877056), and the Science Fund for Distinguished Young Scholars of Hubei Province of China (Grant No. 2006ABB017).

Cite this article: 

Cheng Cheng(程乘), Zhang Xin-Liang(张新亮), Zhang Yu(张羽), Liu Lei(刘磊), and Huang De-Xiu(黄德修) Measurement of the carrier recovery time in SOA based on four-wave mixing on narrow-band ASE spectrum 2010 Chin. Phys. B 19 104206

[1] Feng C F, Wu J, Zhang J Y, Xu K and Lin J T 2008 textit Chin. Phys. B 17 1000
[2] Dong J J, Huang D X and Zhang X L 2008 textit Chin. Phys. B 17 4226
[3] Xie Y Y, Zhang J G, Wang W Q, Yan S Y and Xie X P 2008 Chin. Phys. Lett. 25 2051
[4] Nielsen M, Moerk J, Sakaguchi J, Suzuki R and Ueno Y 2005 textit Technical Digest of OFC (Optical Society of America 2005), paper OThE7, Anaheim
[5] Morgan T J, Lacey J P R and Tucker R S 1998 textit IEEE Photon. Technol. Lett. E 10 1401
[6] Lee K H, Park K H and Choi W Y 2004 textit Opt. Eng. E 43 2715
[7] Obermann K, Kindt S, Breuer D and Petermann K 1998 textit J. Lightwave Technol. 16 78
[8] Agrawal G P 1988 textit J. Opt. Soc. Am. B 5 147 endfootnotesize
[1] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[2] Loss prediction of three-level amplified spontaneous emission sources in radiation environment
Shen Tan(谭深), Yan Li(李彦), Hao-Shi Zhang(张浩石), Xiao-Wei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(6): 064211.
[3] Pump pulse characteristics of quasi-continuous-wave diode-side-pumped Nd:YAG laser
Zexin Song(宋泽鑫), Qi Bian(卞奇), Yu Shen(申玉), Keling Gong(龚柯菱), Nan Zong(宗楠), Qingshuang Zong(宗庆霜), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(5): 054208.
[4] Narrow-band high-transmittance birefringent filter and its application in wide color gamut display
Chi Zhang(张弛), Rui Niu(牛瑞), Wenjuan Li(李文娟), Xiaoshuai Li(李小帅), Hongmei Ma(马红梅), and Yubao Sun(孙玉宝). Chin. Phys. B, 2021, 30(5): 054207.
[5] Demonstration of multi-Watt all-fiber superfluorescent source operating near 980 nm
Yankun Ren(任彦锟), Jianqiu Cao(曹涧秋), Hanyuan Ying(应汉辕), Heng Chen(陈恒), Zhiyong Pan(潘志勇), Shaojun Du(杜少军), Jinbao Chen(陈金宝). Chin. Phys. B, 2018, 27(3): 030703.
[6] Broadrange tunable slow and fast light in quantum dot photonic crystal structure
Alireza Lotfian, Reza Yadipour, Hamed Baghban. Chin. Phys. B, 2017, 26(12): 124207.
[7] Theoretical study of amplified spontaneous emission intensity and bandwidth reduction in polymer
A. Hariri, S. Sarikhani. Chin. Phys. B, 2015, 24(4): 043201.
[8] Photonic multi-shape UWB pulse generation using a semiconductor optical amplifier-based nonlinear optical loop mirror
Luo Bo-Wen (罗博文), Dong Jian-Ji (董建绩), Yu Yuan (于源), Yang Ting (杨婷), Zhang Xin-Liang (张新亮 ). Chin. Phys. B, 2013, 22(2): 023201.
[9] Effect of different metal-backed waveguides on amplified spontaneous emission
Zhang Bo (张波), Hou Yan-Bing (侯延冰), Lou Zhi-Dong (娄志东), Teng Feng (滕枫), Liu Xiao-Jun (刘小君), Hu Bing (胡兵), Meng Ling-Chuan (孟令川), Wu Wen-Bin (武文彬 ). Chin. Phys. B, 2012, 21(8): 084212.
[10] Optimization of regenerator based on semiconductor optical amplifier for degraded differential phase shift keying signal
Ma Yong-Xin(马永欣), Xi Li-Xia(席丽霞), Chen Guang(陈光), and Zhang Xiao-Guang(张晓光) . Chin. Phys. B, 2012, 21(6): 064222.
[11] Photonic generation of power-efficient FCC-compliant ultra-wideband waveforms using semiconductor optical amplifier (SOA): theoretical analysis and experiment verification
Dong Jian-Ji(董建绩), Luo Bo-Wen(罗博文), Huang De-Xiu(黄德修), and Zhang Xin-Liang(张新亮) . Chin. Phys. B, 2012, 21(4): 043201.
[12] The stimulated Raman scattering competition between solute and solvent in Rhodamine B solution
Fang Wen-Hui(房文汇), Li Zuo-Wei(里佐威), Sun Cheng-Lin(孙成林), Li Zhan-Long(李占龙), Song Wei(宋薇), Men Zhi-Wei(门志伟), and He Li-Qiao(何丽桥) . Chin. Phys. B, 2012, 21(3): 034211.
[13] Reconfigurable all-optical dual-directional half-subtractor for high-speed differential phase shift keying signal based on semiconductor optical amplifiers
Zhang Yin(张印), Dong Jian-Ji(董建绩), Lei Lei(雷蕾), and Zhang Xin-Liang(张新亮) . Chin. Phys. B, 2012, 21(2): 024209.
[14] Amplified spontaneous emission from metal-backed poly[2-methoxy-5-(2'-ethylhexyloxy)-1, 4-phenylenevinylene] film
Zhang Bo (张波), Hou Yan-Bing (侯延冰), Teng Feng (滕枫), Lou Zhi-Dong (娄志东), Liu Xiao-Jun (刘小君), Hu Bing (胡兵), Wu Wen-Bin (武文彬). Chin. Phys. B, 2011, 20(7): 077803.
[15] Solvent-vapour treatment induced performance enhancement of amplified spontaneous emission based on poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1, 4-phenylene vinylene]
Zhang Bo(张波), Hou Yan-Bing(侯延冰), Teng Feng(滕枫), Lou Zhi-Dong(娄志东), Liu Xiao-Jun(刘小君), Hu Bing(胡兵), and Wu Wen-Bin(武文彬). Chin. Phys. B, 2011, 20(5): 054208.
No Suggested Reading articles found!