Experimental manipulation of fine structures in high harmonic spectrum of aligned CO2 molecules
Ge-Wen Wang(王革文)1, Yi-Wen Zhao(赵逸文)1, Yi-Chen Wang(王一琛)1, Jing Ma(马婧)1, Bo-Dun Liu(刘博敦)1, Wei Jiang(姜威)1, Hong-Jing Liang(梁红静)2,†, and Ri Ma(马日)1,‡
1 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China; 2 College of Science, Jilin Institute of Chemical Technology, Jilin 132022, China
Abstract Molecular high-order harmonic spectroscopy is a significant advancement in ultrafast science, enabling the measurement of multielectron dynamics with attosecond temporal resolution. The fine structures observed in the molecular harmonic spectrum provide crucial insights into the structural or multielectron dynamical effects induced by intense laser fields. In this study, we measure the high-order harmonic spectrum of aligned CO molecules contributed from short trajectories. Two distinct groups of minima are identified in the plateau region. Our findings indicate that the deeper-lying molecular orbitals and two-center interference play significant roles in molecular harmonic generation. The results pave the way for advancing the understanding of multielectron dynamics in polyatomic molecules under intense laser fields.
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 92250306 and 12304302), the Natural Science Foundation of Jilin Province, China (Grant Nos. YDZJ202101ZYTS157 and YDZJ202201ZYTS314), the Scientific Research Foundation of Jilin Province Education Department, China (Grant No. JJKH20230283KJ).
Corresponding Authors:
Hong-Jing Liang, Ri Ma
E-mail: lianghongjing@jlict.edu.cn;rma@jlu.edu.cn
Cite this article:
Ge-Wen Wang(王革文), Yi-Wen Zhao(赵逸文), Yi-Chen Wang(王一琛), Jing Ma(马婧), Bo-Dun Liu(刘博敦), Wei Jiang(姜威), Hong-Jing Liang(梁红静), and Ri Ma(马日) Experimental manipulation of fine structures in high harmonic spectrum of aligned CO2 molecules 2025 Chin. Phys. B 34 063301
[1] Corkum P B 1993 Phys. Rev. Lett. 71 1994 [2] Mairesse Y, Higuet J, Dudovich N, Shafir D, Fabre B, Mével E, Constant E, Patchkovskii S, Walters Z, Ivanov M Yu and Smirnova O 2010 Phys. Rev. Lett. 104 213601 [3] Kraus P M, Mignolet B, Baykusheva D, Rupenyan A, Horný L, Penka E F, Grassi G, Tolstikhin O I, Schneider J, Jensen F, Madsen L B, Bandrauk A D, Remacle F and Wörner H J 2015 Science 350 790 [4] Smirnova O, Mairesse Y, Patchkovskii S, Dudovich N, Villeneuve D, Corkum P and Ivanov M Yu 2009 Nature 460 972 [5] Zhang B, Zhao J and Zhao Z X 2018 Chin. Phys. Lett. 35 043201 [6] He L X, He Y Q, Sun S Q, Goetz E, Le A T, Zhu X S, Lan P F, Lu P X and Lin C D 2023 Adv. Photonics 5 56001 [7] Huang Y D, Zhao J, Shu Z, Zhu Y L, Liu J L, Dong W P, Wang X W, Lü Z H, Zhang D W, Yuan J M, Chen J and Zhao Z X 2021 Ultrafast Science 2021 9837107 [8] Wagner N L, Wüest A, Christov I P, Popmintchev T, Zhou X, Murnane M M and Kapteyn H C 2006 Proc. Natl. Acad. Sci. USA 103 13279 [9] Li W, Zhou X, Lock R, Patchkovskii S, Stolow A, Kapteyn H C and Murnane M M 2008 Science 322 1207 [10] Baker S, Robinson J S, Haworth C A, Teng H, Smith R A, Chirila C C, Lein M, Tisch J W G and Marangos J P 2006 Science 312 424 [11] He L X, Yuen C H, He Y Q, Sun S Q, Goetz E, Le A T, Deng Y, Xu C Q, Lan P F, Lu P X and Lin C D 2024 Phys. Rev. Lett. 133 23201 [12] Itatani J, Levesque J, Zeidler D, Niikura H, Pépin H, Kieffer J C, Corkum P B and Villeneuve D M 2004 Nature 432 867 [13] Qin M Y, Zhu X S, Zhang Q B and Lu P X 2012 Opt. Lett. 37 5208 [14] Lin C D and Tong X M 2006 J. Photochem. Photobiol., A: Chem. 182 213 [15] Haessler S, Caillat J, Boutu W, Giovanetti-Teixeira C, Ruchon T, Auguste T, Diveki Z, Breger P, Maquet A, Carré B, Taïeb R and Salières P 2010 Nat. Phys. 6 200 [16] Vozzi C, Negro M, Calegari F, Sansone G, Nisoli M, De Silvestri S and Stagira S 2011 Nat. Phys. 7 822 [17] Wörner H J, Niikura H, Bertrand J B, Corkum P B and Villeneuve D M 2009 Phys. Rev. Lett. 102 103901 [18] Lein M, Hay N, Velotta R, Marangos J P and Knight P L 2002 Phys. Rev. Lett. 88 183903 [19] Tuthill D R, Scarborough T D, Gorman T T, Hamer K A, Jones R R, Gaarde M B, Lopata K, Mauger F, Schafer K J and DiMauro L F 2022 J. Phys. Chem. A 126 8588 [20] Torres R, Siegel T, Brugnera L, Procino I, Underwood J G, Altucci C, Velotta R, Springate E, Froud C, Turcu I C E, Patchkovskii S, Ivanov M Yu, Smirnova O and Marangos J P 2010 Phys. Rev. A 81 051802 [21] Zhou X, Lock R, Li W, Wagner N, Murnane M M and Kapteyn H C 2008 Phys. Rev. Lett. 100 073902 [22] Kanai T, Minemoto S and Sakai H 2005 Nature 435 470 [23] Vozzi C, Calegari F, Benedetti E, Caumes J P, Sansone G, Stagira S, Nisoli M, Torres R, Heesel E, Kajumba N, Marangos J P, Altucci C and Velotta R 2005 Phys. Rev. Lett. 95 153902 [24] Kato K, Minemoto S and Sakai H 2011 Phys. Rev. A 84 021403 [25] Liang H J, Fan X, Feng S, Shan L Y, Gao Q H, Yan B, Ma R and Xu H F 2019 Chin. Phys. B 28 094207 [26] Rupenyan A, Kraus P M, Schneider J and Wörner H J 2013 Phys. Rev. A 87 31401 [27] Rupenyan A, Kraus P M, Schneider J and Wörner H J 2013 Phys. Rev. A 87 33409 [28] Ruberti M, Decleva P and Averbukh V 2018 Phys. Chem. Chem. Phys. 20 8311 [29] Jin C, Wang S J, Zhao S F, Le A T and Lin C D 2020 Phys. Rev. A 102 013108 [30] Bruner B D, Mašín Z, Negro M, Morales F, Brambila D, Devetta M, Faccialà D, Harvey A G, Ivanov M, Mairesse Y, Patchkovskii S, Serbinenko V, Soifer H, Stagira S, Vozzi C, Dudovich N and Smirnova O 2016 Faraday Discuss. 194 369 [31] Shu Z, Liang H J, Wang Y C, Hu S L, Chen S, Xu H F, Ma R, Ding D J and Chen J 2022 Phys. Rev. Lett. 128 183202 [32] Camper A, Ferré A, Blanchet V, Descamps D, Lin N, Petit S, Lucchese R, Salières P, Ruchon T and Mairesse Y 2023 Phys. Rev. Lett. 130 083201 [33] Zhu Y, Jiang Z, Ren Z, Bai G, Wang X, Zhang D, Liu J, Zhao J and Zhao Z 2024 Opt. Express 32 37446 [34] Long J, Chen Y H, Zhu X S, He L X, Lan P F and Lu P X 2023 J. Phys. B: At. Mol. Opt. Phys. 56 055601 [35] McFarland B K, Farrell J P, Bucksbaum P H and Gühr M 2008 Science 322 1232 [36] Fu T T, Zhou S S, Chen J G,Wang J, Guo F M and Yang Y J 2023 Opt. Express 31 30171 [37] Sukiasyan S, McDonald C, Destefani C, Ivanov M Yu and Brabec T 2009 Phys. Rev. Lett. 102 223002 [38] Patchkovskii S, Zhao Z X, Brabec T and Villeneuve D M 2006 Phys. Rev. Lett. 97 123003 [39] Diveki Z, Guichard R, Caillat J, Camper A, Haessler S, Auguste T, Ruchon T, Carré B, Maquet A, Taïeb R and Salières P 2013 Chem. Phys. 414 121 [40] Xiao B, Zhao Y W, Cheng F J, Wang G W, Jiang W, Wang Y C, Hu J, Liang H J and Ma R 2024 Chin. Phys. B 33 054209
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.