|
Special Issue:
SPECIAL TOPIC — Ultrafast physics in atomic, molecular and optical systems
|
| SPECIAL TOPIC — Ultrafast physics in atomic, molecular and optical systems |
Prev
Next
|
|
|
Relativistic terahertz laser pulse from photon deceleration in a plasma wakefield |
| Jie Cai(蔡杰)1,2, Minjian Wu(吴旻剑)1, Yixing Geng(耿易星)1, Huangang Lu(卢寰港)1, Han Wen(温寒)2, Liqi Han(韩立琦)2, Yanying Zhao(赵研英)1,†, Jinqing Yu(余金清)2, and Xueqing Yan(颜学庆)1 |
1 State Key Laboratory of Nuclear Physics and Technology, and Key Laboratory of HEDP of the Ministry of Education, CAPT, Peking University, Beijing 100871, China; 2 Hunan Provincial Key Laboratory of High-Energy Scale Physics and Applications School of Physics and Electronics, Hunan University, Changsha 410082, China |
|
|
|
|
Abstract Terahertz (THz) radiation, spanning the frequency range 100 GHz to 10 THz, offers diverse applications in spectroscopy, materials characterization, medical diagnostics and environmental monitoring. Despite its potential, the generation of high-intensity, tunable THz radiation remains a significant challenge. In this work, we explore a novel approach to the efficient generation of THz radiation based on laser-plasma interactions, utilizing the principles of photon deceleration. When a relativistic CO2 laser passes through a pre-ionized plasma, the laser induces a nonlinear wakefield, creating a strong refractive index gradient. This gradient, combined with the lower-density region of the wakefield, slows down the laser, facilitating the accumulation of THz radiation. The resulting THz pulse exhibits extreme collimation, high energy efficiency and tunability. Our work shows that this method can achieve up to 10% conversion efficiency with optimal plasma density near the critical density. This technique presents a promising solution for overcoming current limitations in THz source development and offers potential for diverse applications.
|
Received: 11 January 2025
Revised: 10 March 2025
Accepted manuscript online: 12 March 2025
|
|
PACS:
|
32.30.Bv
|
(Radio-frequency, microwave, and infrared spectra)
|
| |
52.38.-r
|
(Laser-plasma interactions)
|
| |
42.62.-b
|
(Laser applications)
|
|
| Fund: Project supported by the China Postdoctoral Science Foundation (Grant No. 2024T170021), the Beijing Municipal Science & Technology Commission, Administrative Commission of Zhongguancun Science Park (Grant No. Z231100006023003), the National Natural Science Foundation of China (Grant Nos. 12175058, 12205007, and 11921006), and the National Science Fund of Hunan Province for Distinguished Young Scholars (Grant No. 2024JJ2009). |
Corresponding Authors:
Yanying Zhao
E-mail: zhaoyanying@pku.edu.cn
|
Cite this article:
Jie Cai(蔡杰), Minjian Wu(吴旻剑), Yixing Geng(耿易星), Huangang Lu(卢寰港), Han Wen(温寒), Liqi Han(韩立琦), Yanying Zhao(赵研英), Jinqing Yu(余金清), and Xueqing Yan(颜学庆) Relativistic terahertz laser pulse from photon deceleration in a plasma wakefield 2025 Chin. Phys. B 34 063201
|
[1] Hafez H, Chai X, Ibrahim A, Mondal S, Férachou D, Ropagnol X and Ozaki T 2016 Journal of Optics 18 093004 [2] Zhang X C, Shkurinov A and Zhang Y 2017 Nat. Photon. 11 16 [3] Leitenstorfer A, Moskalenko A S, Kampfrath T, Kono J, Castro-Camus E, Peng K, Qureshi N, Turchinovich D, Tanaka K, Markelz A G, et al. 2023 J. Phys. D: Appl. Phys. 56 223001 [4] Yu C, Fan S, Sun Y and Pickwell-MacPherson E 2012 Quantitative Imaging in Medicine and Surgery 2 33 [5] Yu L, Hao L, Meiqiong T, Jiaoqi H, Wei L, Jinying D, Xueping C, Weiling F and Yang Z 2019 RSC Advances 9 9354 [6] Chen Z, Han C, Wu Y, Li L, Huang C, Zhang Z, Wang G and Tong W 2021 IEEE Communications Magazine 59 66 [7] Kulesa C 2011 IEEE Transactions on Terahertz Science and Technology 1 232 [8] Lara-Avila S, Danilov A, Golubev D, He H, Kim K, Yakimova R, Lombardi F, Bauch T, Cherednichenko S and Kubatkin S 2019 Nature Astronomy 3 983 [9] Nanni E A, Huang W R, Hong K H, Ravi K, Fallahi A, Moriena G, Dwayne Miller R and Kärtner F X 2015 Nat. Commun. 6 8486 [10] Zhang D, Fallahi A, Hemmer M, Wu X, Fakhari M, Hua Y, Cankaya H, Calendron A L, Zapata L E, Matlis N H, et al. 2018 Nat. Photon. 12 336 [11] Curry E, Fabbri S, Maxson J, Musumeci P and Gover A 2018 Phys. Rev. Lett. 120 094801 [12] Zhao L, Wang Z, Lu C, Wang R, Hu C, Wang P, Qi J, Jiang T, Liu S, Ma Z, et al. 2018 Phys. Rev. X 8 021061 [13] Kealhofer C, SchneiderW, Ehberger D, Ryabov A, Krausz F and Baum P 2016 Science 352 429 [14] LaRue J L, Katayama T, Lindenberg A, Fisher A S, Öström H, Nilsson A and Ogasawara H 2015 Phys. Rev. Lett. 115 036103 [15] Kampfrath T, Sell A, Klatt G, Pashkin A, Mährlein S, Dekorsy T, Wolf M, Fiebig M, Leitenstorfer A and Huber R 2011 Nat. Photon. 5 31 [16] Kampfrath T, Tanaka K and Nelson K A 2013 Nat. Photon. 7 680 [17] Baierl S, Hohenleutner M, Kampfrath T, Zvezdin A, Kimel A, Huber R and Mikhaylovskiy R 2016 Nat. Photon. 10 715 [18] Tan Y, Zhao H, Wang W M, Zhang R, Zhao Y J, Zhang C L, Zhang X C and Zhang L L 2022 Phys. Rev. Lett. 128 093902 [19] Zhang L L,WangWM,Wu T, Feng S J, Kang K, Zhang C L, Zhang Y, Li Y T, Sheng Z M and Zhang X C 2019 Phys. Rev. Applied 12 014005 [20] Wang J, Zhang Z, Zhou S, Qin Z, Yu C, Cao Y, Lv Y, Chen J, Huang H, Liu W, et al. 2025 Laser & Photonics Reviews 19 2400954 [21] Maestrini A,Ward J S, Javadi H, Tripon-Canseliet C, Gill J, Chattopadhyay G, Schlecht E and Mehdi I 2005 IEEE Microwave and Wireless Components Lett. 15 871 [22] Köhler R, Tredicucci A, Beltram F, Beere H E, Linfield E H, Davies A G, Ritchie D A, Iotti R C and Rossi F 2002 Nature 417 156 [23] Wu X J, Ma J L, Zhang B L, Chai S S, Fang Z J, Xia C Y, Kong D Y, Wang J G, Liu H, Zhu C Q, et al. 2018 Opt. Express 26 7107 [24] Sell A, Leitenstorfer A and Huber R 2008 Opt. Lett. 33 2767 [25] Liao G Q and Li Y T 2019 IEEE Transactions on Plasma Science 47 3002 [26] Zhang L L, Wang W M, Wu T, Zhang R, Zhang S J, Zhang C L, Zhang Y, Sheng Z M and Zhang X C 2017 Phys. Rev. Lett. 119 235001 [27] Maine P, Strickland D, Bado P, Pessot M and Mourou G 1988 IEEE Journal of Quantum Electronics 24 398 [28] Sprangle P, Esarey E and Ting A 1990 Phys. Rev. Lett. 64 2011 [29] Wilks S, Dawson J, Mori W, Katsouleas T and Jones M 1989 Phys. Rev. Lett. 62 2600 [30] Nie Z, Pai C H, Hua J, Zhang C, Wu Y, Wan Y, Li F, Zhang J, Cheng Z, Su Q, et al. 2018 Nat. Photon. 12 489 [31] Nie Z, Pai C H, Zhang J, Ning X, Hua J, He Y, Wu Y, Su Q, Liu S, Ma Y, et al. 2020 Nat. Commun. 11 2787 [32] Zhu X L, Weng S M, Chen M, Sheng Z M and Zhang J 2020 Light: Science & Applications 9 46 [33] Nie Z, Wu Y, Zhang C, Mori W B, Joshi C, Lu W, Pai C H, Hua J and Wang J 2021 Phys. Plasmas 28 023106 [34] Zhu X L, Chen M, Weng S M, McKenna P, Sheng Z M and Zhang J 2019 Phys. Rev. Applied 12 054024 [35] Li D, Zhang G, Zhao J, Hu Y, Lu Y, Zhang H, Li Q, Zhang D, Sha R, Shao F, et al. 2023 High Power Laser Science and Engineering 11 e57 [36] Wang Y X, Shou Y R, Cai J, Han L Q, Geng Y X, Yu J Q and Yan X Q 2024 Phys. Plasmas 31 033111 [37] Esarey E, Ting A and Sprangle P 1990 Phys. Rev. A 42 3526 [38] Mironov V, Sergeev A, Vanin E and Brodin G 1990 Phys. Rev. A 42 4862 [39] Lu W, Tzoufras M, Joshi C, Tsung F, Mori W, Vieira J, Fonseca R and Silva L 2007 Phys. Rev. Spec. Topi. Accel. Beams 10 061301 [40] Mori W 1997 IEEE Journal of Quantum Electronics 33 1942 [41] Huang S W, Granados E, Huang W R, Hong K H, Zapata L E and Kärtner F X 2013 Opt. Lett. 38 796 [42] Fülöp J, Pálfalvi L, Klingebiel S, Almási G, Krausz F, Karsch S and Hebling J 2012 Opt. Lett. 37 557 [43] Stepanov A, Henin S, Petit Y, Bonacina L, Kasparian J and Wolf J P 2010 Appl. Phys. B 101 11 [44] Vicario C, Ovchinnikov A, Ashitkov S, Agranat M, Fortov V and Hauri C 2014 Opt. Lett. 39 6632 [45] Liao G, Li Y, Liu H, Scott G G, Neely D, Zhang Y, Zhu B, Zhang Z, Armstrong C, Zemaityte E, et al. 2019 Proc. Natl. Acad. Sci. USA 116 3994 [46] Déchard J, Debayle A, Davoine X, Gremillet L and Bergé L 2018 Phys. Rev. Lett. 120 144801 [47] Liao G, Li Y, Li C, Su L, Zheng Y, Liu M, Wang W, Hu Z, Yan W, Dunn J, et al. 2015 Phys. Rev. Lett. 114 255001 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|