Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(6): 066202    DOI: 10.1088/1674-1056/adc668
Special Issue: SPECIAL TOPIC — Structures and properties of materials under high pressure
SPECIAL TOPIC — Structures and properties of materials under high pressure Prev   Next  

High-pressure synthesis of an oxynitride perovskite CeNbO2N with Nb4+ charge state

Shengjie Liu(刘胜杰)1,2, Xubin Ye(叶旭斌)2, Zhao Pan(潘昭)2,3, Jie Zhang(张杰)2,3, Shuai Tang(唐帅)2,3, Guangkai Zhang(张广凯)2,4, Maocai Pi(皮茂材)2,3, Zhiwei Hu(胡志伟)5, Chien-Te Chen(陈建德)6, Ting-Shan Chan(詹丁山)6, Cheng Dong(董成)2, Tian Cui(崔田)1, Yanping Huang(黄艳萍)1, Zhenhua Chi(迟振华)7,†, Yao Shen(沈瑶)2,3,‡, and Youwen Long(龙有文)2,3,8,§
1 Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
4 Department of Physics, Shanghai Normal University, Shanghai 200234, China;
5 Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, 01187 Dresden, Germany 6 National Synchrotron Radiation Research Center (NSRRC), Hsinchu Science Park, Hsinchu 300092, Taiwan, China 7 Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China 8 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  Perovskite oxynitrides AB(N,O)3, a crucial class in materials science, have attracted much attention. By precisely controlling A- and B-site ions and tuning the N/O ratio, new materials with exotic charge states and intriguing electronic behaviors can be designed and synthesized. In this work, a novel oxynitride perovskite, CeNbO2N, was prepared under high-temperature and high-pressure conditions. The compound crystallizes in an orthorhombic perovskite structure in Pnma symmetry with disordered N/O distribution. The x-ray absorption spectroscopy confirms the presence of a Nb4+ state with 4d1 electronic configuration in CeNbO2N. As a result, the resistivity of CeNbO2N is sharply reduced compared to its counterpart CeTa5+ON2 and other Nb5+ compounds. No long-range spin order is found to occur with the temperature down to 2 K in CeNbO2N, while a remarkable negative magnetoresistance effect shows up at lower temperatures, probably due to the magnetic scattering arising from short-range spin correlations.
Keywords:  high-pressure synthesis      oxynitride perovskite      spin correlation  
Received:  12 March 2025      Revised:  27 March 2025      Accepted manuscript online:  28 March 2025
PACS:  62.50.-p (High-pressure effects in solids and liquids)  
  72.80.Ga (Transition-metal compounds)  
  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2021YFA1400300), the National Natural Science Foundation of China (Grant Nos. 12425403, 12261131499, 12304268, 12304159, 11934017, and 11921004), and the China Postdoctoral Science Foundation (Grant No. 2023M743741). The synchrotron x-ray diffraction experiments were performed at SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (Grant Nos. 2023B1575, 2023B1976, 2024A1506, and 2024A1695).
Corresponding Authors:  Zhenhua Chi, Yao Shen, Youwen Long     E-mail:  zhchi@issp.ac.cn;yshen@iphy.ac.cn;ywlong@iphy.ac.cn

Cite this article: 

Shengjie Liu(刘胜杰), Xubin Ye(叶旭斌), Zhao Pan(潘昭), Jie Zhang(张杰), Shuai Tang(唐帅), Guangkai Zhang(张广凯), Maocai Pi(皮茂材), Zhiwei Hu(胡志伟), Chien-Te Chen(陈建德), Ting-Shan Chan(詹丁山), Cheng Dong(董成), Tian Cui(崔田), Yanping Huang(黄艳萍), Zhenhua Chi(迟振华), Yao Shen(沈瑶), and Youwen Long(龙有文) High-pressure synthesis of an oxynitride perovskite CeNbO2N with Nb4+ charge state 2025 Chin. Phys. B 34 066202

[1] Hwang J, Rao R R, Giordano L, Katayama Y, Yang Y and Yang S H 2017 Science 358 751
[2] Jia Z Y, Cheng C P, Chen X, Liu L L, Ding R, Ye J L, Wang J, Fu L J, Cheng Y H and Wu Y P 2023 Mater. Adv. 4 79
[3] Xiong C, Li B S, Liao Z X, Qiu Y and Gao D Q 2025 Chin. Phys. B 34 047701
[4] Song W B, Xi G Q, Pan Z, Liu J, Ye X B, Liu Z H, Wang X, Shan P F, Zhang L X, Lu N P, Fan L L, Qin X M and Long Y W 2024 Chin. Phys. B 33 057701
[5] Yen F, Dela Cruz C, Lorenz B, Galstyan E, Sun Y Y, Gospodinov M and Chu C W 2007 J. Mater. Res. 22 2163
[6] Dabrowski B, Kolesnik S, Baszczuk A, Chmaissem O, Maxwell T and Mais J 2005 J. Solid State Chem. 178 629
[7] Qin S J, Zhou B W, Liu Z H, Ye X B, Zhang X Q, Pan Z and Long Y W 2022 Chin. Phys. B 31 097503
[8] Ye X B, Zhao J F, Das H, et al. 2021 Nat. Commun. 12 1917
[9] Quan L N, Rand B P, Friend R H, Mhaisalkar S G, Lee TWand Sargent E H 2019 Chem. Rev. 119 7444
[10] Wiesendanger E 1973 Ferroelectrics 6 263
[11] Feng Y J, Chen Y P, Wang L Y, Wang J X, Chang D H, Yuan Y F, Wu M, Fu R J, Zhang L L, Wang Q L, Wang K, Guo H Z and Wang L R 2024 Chin. Phys. Lett. 41 063201
[12] Matsukawa M, Ishikawa R, Hisatomi T, Moriya Y, Shibata N, Kubota J, Ikuhara Y and Domen K 2014 Nano Lett. 14 1038
[13] Yang M H, OrSolé J, Kusmartseva A, Fuertes A and Attfield J P 2010 J. Am. Chem. Soc. 132 4822
[14] Tassel C, Kuno Y, Goto Y, Yamamoto T, Brown C M, Hester J, Fujita K, Higashi M, Abe R, Tanaka K, Kobayashi Y and Kageyama H 2015 Angew. Chem. 127 526
[15] Vadapoo R, Ahart M, Somayazulu M, Vadapoo R, Holtgrewe N, Meng Y, Konopkova Z, Hemley R J and Cohen R E 2017 Phys. Rev. B 95 214120
[16] Kim Y I, Woodward P M, Baba-Kishi K Z and Tai C W 2004 Chem. Mater. 16 1267
[17] Jorge A B, Oró-Solé J, Bea A M, Mufti N, Palstra T T M, Rodgers J A, Attfield J P and Fuertes A 2008 J. Am. Chem. Soc. 130 12572
[18] Porter S H, Huang Z G, Cheng Z X, Avdeev M, Chen Z X, Dou S X and Woodward P M 2015 J. Solid State Chem. 226 279
[19] Chen Z L, Lu D B, Ye X B, Zhao H T, Zhang J, Pan Z, Chi Z H, Cui T, Shen Y and Long Y W 2024 Acta Phys. Sin. 73 080702 (in Chinese)
[20] Kloß S D, Weidemann M L and Attfield J P 2021 Angew. Chem. Int. Ed. 60 22260
[21] Talley K R, Perkins C L, Diercks D R, Brennecka G L and Zakutayev A 2021 Science 374 1488
[22] Kim Y I and Lee E 2011 J. Ceram. Soc. Jpn. 119 371
[23] Kim Y I, Si W, Woodward P M, Sutter E, Park S and Vogt T 2007 Chem. Mater. 19 618
[24] Zhang Y R, Motohashi T, Masubuchi Y and Kikkawa S 2011 J. Ceram. Soc. Jpn. 119 581
[25] Santoro A, Marezio M, Roth R S and Minor D 1980 J. Solid State Chem. 35 167
[26] Von Dreele R B 1997 J. Appl. Crystallogr. 30 517
[27] Mitra C, Hu Z, Raychaudhuri P, Wirth S, Csiszar S I, Hsieh H H, Lin H J, Chen C T and Tjeng L H 2003 Phys. Rev. B 67 092404
[28] Howald L, Stilp E, De Réotier P D, Yaouanc A, Raymond S, Piamonteze C, Lapertot G, Baines C and Keller H 2015 Sci. Rep. 5 12528
[29] Strigari F, Willers T, Muro Y, Yutani K, Takabatake T, Hu Z, Agrestini S, Kuo C Y, Chin Y Y, Lin H J, Pi TW, Chen C T,Weschke E, Schierle E, Tanaka A, Haverkort M W, Tjeng L H and Severing A 2013 Phys. Rev. B 87 125119
[30] Chen J M, Chin Y Y, Valldor M, Hu Z, Lee J M, Haw S C, Hiraoka N, Ishii H, Pao C W, Tsuei K D, Lee J F, Lin H J, Jang L Y, Tanaka A, Chen C T and Tjeng L H 2014 J. Am. Chem. Soc. 136 1514
[31] Burnus T, Hu Z, Wu H, Cezar J C, Niitaka S, Takagi H, Chang C F, Brookes N B, Lin H J, Jang L Y, Tanaka A, Liang K S, Chen C T and Tjeng L H 2008 Phys. Rev. B 77 205111
[32] Ji Y, Wang W F, Ding Y F, Wang H X, Yang J K, Guo Q W, Ye X B, Shen X, Yao Y, Zhao J F, Jin C Q, Chan T S, Hu Z W, Long Y W and Yu R C 2022 J. Phys.: Condens. Matter 628 413624
[33] Mugiraneza S and Hallas A M 2022 Commun. Phys. 5 95
[34] Martins C, Aichhorn M and Biermann S 2017 J. Phys.: Condens. Matter 29 263001
[35] Pathak A K, Paudyal D, Mudryk Y, Gschneidner K A and Pecharsky V K 2013 Phys. Rev. Lett. 110 186405
[36] Ranaut D and Mukherjee K 2022 J. Phys.: Condens. Matter 34 315802
[37] Shao M J, Cao S X, Wang Y B, Yuan S J, Kang B J, Zhang J C, Wu A H and Xu J 2011 J. Cryst. Growth 318 947
[38] Cheng J G, Sui Y, Qian Z N, Liu Z G, Miao J P, Huang X Q, Lu Z, Li Y, Wang X J and Su W H 2005 Solid State Commun. 134 381
[39] Kobayashi K I, Kimura T, Sawada H, Terakura K and Tokura Y 1998 Nature 395 677
[40] Shanker V, Samal S L, Pradhan G K, Narayana C and Ganguli A K 2009 Solid State Sci. 11 562
[41] Oka D, Hirose Y, Nakao S, Fukumura T and Hasegawa T 2015 Phys. Rev. B 92 205102
[42] Wei H R, Chen S R, Zou Y T, Wang Y X, Yang M, Zhang Q H, Zou K, Gu L, Jiang K, Guo E J and Cheng Z G 2024 Phys. Rev. B 109 205404
[1] Iron nitrides: High-pressure synthesis, nitrogen disordering and local magnetic moment
Yu Tao(陶雨) and Li Lei(雷力). Chin. Phys. B, 2025, 34(6): 068301.
[2] Commensurate and incommensurate Haldane phases for a spin-1 bilinear-biquadratic model
Yan-Wei Dai(代艳伟), Ai-Min Chen(陈爱民), Xi-Jing Liu(刘希婧), and Yao-Heng Su(苏耀恒). Chin. Phys. B, 2023, 32(9): 090304.
[3] A new transition metal diphosphide α-MoP2 synthesized by a high-temperature and high-pressure technique
Xiaolei Liu(刘晓磊), Zhenhai Yu(于振海), Jianfu Li(李建福), Zhenzhen Xu(徐真真), Chunyin Zhou(周春银), Zhaohui Dong(董朝辉), Lili Zhang(张丽丽), Xia Wang(王霞), Na Yu(余娜), Zhiqiang Zou(邹志强),Xiaoli Wang(王晓丽), and Yanfeng Guo(郭艳峰). Chin. Phys. B, 2023, 32(1): 018102.
[4] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[5] Magnetism and giant magnetocaloric effect in rare-earth-based compounds R3BWO9 (R = Gd, Dy, Ho)
Lu-Ling Li(李炉领), Xiao-Yu Yue(岳小宇), Wen-Jing Zhang(张文静), Hu Bao(鲍虎), Dan-Dan Wu(吴丹丹), Hui Liang(梁慧), Yi-Yan Wang(王义炎), Yan Sun(孙燕), Qiu-Ju Li(李秋菊), and Xue-Feng Sun(孙学峰). Chin. Phys. B, 2021, 30(7): 077501.
[6] Critical behavior and effect of Sr substitution in double perovskite Ca2CrSbO6
Yuan-Yuan Jiao(焦媛媛), Jian-Ping Sun(孙建平), and Qi Cui(崔琦). Chin. Phys. B, 2021, 30(3): 037501.
[7] Doping effect on the structure and physical properties of quasi-one-dimensional compounds Ba9Co3(Se1-xSx)15 (x = 0-0.2)
Lei Duan(段磊), Xian-Cheng Wang(望贤成), Jun Zhang(张俊), Jian-Fa Zhao(赵建发), Wen-Min Li(李文敏), Li-Peng Cao(曹立朋), Zhi-Wei Zhao(赵志伟), Changjiang Xiao(肖长江), Ying Ren(任瑛), Shun Wang(王顺), Jinlong Zhu(朱金龙), and Chang-Qing Jin(靳常青). Chin. Phys. B, 2021, 30(10): 106101.
[8] High pressure synthesis and characterization of the pyrochlore Dy2Pt2O7: A new spin ice material
Qi Cui(崔琦), Yun-Qi Cai(蔡云麒), Xiang Li(李翔), Zhi-Ling Dun(顿志凌), Pei-Jie Sun(孙培杰), Jian-Shi Zhou(周建十), Hai-Dong Zhou(周海东), Jin-Guang Cheng(程金光). Chin. Phys. B, 2020, 29(4): 047502.
[9] Spin glassy behavior and large exchange bias effect in cubic perovskite Ba0.8Sr0.2FeO3-δ
Yu-Xuan Liu(刘宇轩), Zhe-Hong Liu(刘哲宏), Xu-Bin Ye(叶旭斌), Xu-Dong Shen(申旭东), Xiao Wang(王潇), Bo-Wen Zhou(周博文), Guang-Hui Zhou(周光辉), You-Wen Long(龙有文). Chin. Phys. B, 2019, 28(6): 068104.
[10] A-site ordered quadruple perovskite oxides AA3'B4O12
Youwen Long(龙有文). Chin. Phys. B, 2016, 25(7): 078108.
[11] Entanglement control in one-dimensional s=1/2 random XY spin chain
Shan Chuan-Jia(单传家), Cheng Wei-Wen(程维文), Liu Tang-Kun(刘堂昆), Huang Yan-Xia(黄燕霞), Li Hong(李宏), and Xia Yun-Jie(夏云杰). Chin. Phys. B, 2008, 17(3): 794-800.
[12] HIGH-PRESSURE SYNTHESIS OF MgB2 SUPER-CONDUCTOR WITH Tc ABOVE 39 K
Li Shao-chun (李绍春), Zhu Jia-lin (朱嘉林), Yu Ri-cheng (禹日成), Li Feng-ying (李凤英), Liu Zhen-xing (刘振兴), Jin Chang-qing (靳常青). Chin. Phys. B, 2001, 10(4): 338-339.
No Suggested Reading articles found!