1 Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China; 2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 4 Department of Physics, Shanghai Normal University, Shanghai 200234, China; 5 Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, 01187 Dresden, Germany 6 National Synchrotron Radiation Research Center (NSRRC), Hsinchu Science Park, Hsinchu 300092, Taiwan, China 7 Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China 8 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract Perovskite oxynitrides (N,O), a crucial class in materials science, have attracted much attention. By precisely controlling - and -site ions and tuning the N/O ratio, new materials with exotic charge states and intriguing electronic behaviors can be designed and synthesized. In this work, a novel oxynitride perovskite, CeNbON, was prepared under high-temperature and high-pressure conditions. The compound crystallizes in an orthorhombic perovskite structure in Pnma symmetry with disordered N/O distribution. The x-ray absorption spectroscopy confirms the presence of a Nb state with 4d electronic configuration in CeNbON. As a result, the resistivity of CeNbON is sharply reduced compared to its counterpart CeTaON and other Nb compounds. No long-range spin order is found to occur with the temperature down to 2 K in CeNbON, while a remarkable negative magnetoresistance effect shows up at lower temperatures, probably due to the magnetic scattering arising from short-range spin correlations.
(Magnetotransport phenomena; materials for magnetotransport)
Fund: Project supported by the National Key R&D Program of China (Grant No. 2021YFA1400300), the National Natural Science Foundation of China (Grant Nos. 12425403, 12261131499, 12304268, 12304159, 11934017, and 11921004), and the China Postdoctoral Science Foundation (Grant No. 2023M743741). The synchrotron x-ray diffraction experiments were performed at SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (Grant Nos. 2023B1575, 2023B1976, 2024A1506, and 2024A1695).
Corresponding Authors:
Zhenhua Chi, Yao Shen, Youwen Long
E-mail: zhchi@issp.ac.cn;yshen@iphy.ac.cn;ywlong@iphy.ac.cn
Cite this article:
Shengjie Liu(刘胜杰), Xubin Ye(叶旭斌), Zhao Pan(潘昭), Jie Zhang(张杰), Shuai Tang(唐帅), Guangkai Zhang(张广凯), Maocai Pi(皮茂材), Zhiwei Hu(胡志伟), Chien-Te Chen(陈建德), Ting-Shan Chan(詹丁山), Cheng Dong(董成), Tian Cui(崔田), Yanping Huang(黄艳萍), Zhenhua Chi(迟振华), Yao Shen(沈瑶), and Youwen Long(龙有文) High-pressure synthesis of an oxynitride perovskite CeNbO2N with Nb4+ charge state 2025 Chin. Phys. B 34 066202
[1] Hwang J, Rao R R, Giordano L, Katayama Y, Yang Y and Yang S H 2017 Science 358 751 [2] Jia Z Y, Cheng C P, Chen X, Liu L L, Ding R, Ye J L, Wang J, Fu L J, Cheng Y H and Wu Y P 2023 Mater. Adv. 4 79 [3] Xiong C, Li B S, Liao Z X, Qiu Y and Gao D Q 2025 Chin. Phys. B 34 047701 [4] Song W B, Xi G Q, Pan Z, Liu J, Ye X B, Liu Z H, Wang X, Shan P F, Zhang L X, Lu N P, Fan L L, Qin X M and Long Y W 2024 Chin. Phys. B 33 057701 [5] Yen F, Dela Cruz C, Lorenz B, Galstyan E, Sun Y Y, Gospodinov M and Chu C W 2007 J. Mater. Res. 22 2163 [6] Dabrowski B, Kolesnik S, Baszczuk A, Chmaissem O, Maxwell T and Mais J 2005 J. Solid State Chem. 178 629 [7] Qin S J, Zhou B W, Liu Z H, Ye X B, Zhang X Q, Pan Z and Long Y W 2022 Chin. Phys. B 31 097503 [8] Ye X B, Zhao J F, Das H, et al. 2021 Nat. Commun. 12 1917 [9] Quan L N, Rand B P, Friend R H, Mhaisalkar S G, Lee TWand Sargent E H 2019 Chem. Rev. 119 7444 [10] Wiesendanger E 1973 Ferroelectrics 6 263 [11] Feng Y J, Chen Y P, Wang L Y, Wang J X, Chang D H, Yuan Y F, Wu M, Fu R J, Zhang L L, Wang Q L, Wang K, Guo H Z and Wang L R 2024 Chin. Phys. Lett. 41 063201 [12] Matsukawa M, Ishikawa R, Hisatomi T, Moriya Y, Shibata N, Kubota J, Ikuhara Y and Domen K 2014 Nano Lett. 14 1038 [13] Yang M H, OrSolé J, Kusmartseva A, Fuertes A and Attfield J P 2010 J. Am. Chem. Soc. 132 4822 [14] Tassel C, Kuno Y, Goto Y, Yamamoto T, Brown C M, Hester J, Fujita K, Higashi M, Abe R, Tanaka K, Kobayashi Y and Kageyama H 2015 Angew. Chem. 127 526 [15] Vadapoo R, Ahart M, Somayazulu M, Vadapoo R, Holtgrewe N, Meng Y, Konopkova Z, Hemley R J and Cohen R E 2017 Phys. Rev. B 95 214120 [16] Kim Y I, Woodward P M, Baba-Kishi K Z and Tai C W 2004 Chem. Mater. 16 1267 [17] Jorge A B, Oró-Solé J, Bea A M, Mufti N, Palstra T T M, Rodgers J A, Attfield J P and Fuertes A 2008 J. Am. Chem. Soc. 130 12572 [18] Porter S H, Huang Z G, Cheng Z X, Avdeev M, Chen Z X, Dou S X and Woodward P M 2015 J. Solid State Chem. 226 279 [19] Chen Z L, Lu D B, Ye X B, Zhao H T, Zhang J, Pan Z, Chi Z H, Cui T, Shen Y and Long Y W 2024 Acta Phys. Sin. 73 080702 (in Chinese) [20] Kloß S D, Weidemann M L and Attfield J P 2021 Angew. Chem. Int. Ed. 60 22260 [21] Talley K R, Perkins C L, Diercks D R, Brennecka G L and Zakutayev A 2021 Science 374 1488 [22] Kim Y I and Lee E 2011 J. Ceram. Soc. Jpn. 119 371 [23] Kim Y I, Si W, Woodward P M, Sutter E, Park S and Vogt T 2007 Chem. Mater. 19 618 [24] Zhang Y R, Motohashi T, Masubuchi Y and Kikkawa S 2011 J. Ceram. Soc. Jpn. 119 581 [25] Santoro A, Marezio M, Roth R S and Minor D 1980 J. Solid State Chem. 35 167 [26] Von Dreele R B 1997 J. Appl. Crystallogr. 30 517 [27] Mitra C, Hu Z, Raychaudhuri P, Wirth S, Csiszar S I, Hsieh H H, Lin H J, Chen C T and Tjeng L H 2003 Phys. Rev. B 67 092404 [28] Howald L, Stilp E, De Réotier P D, Yaouanc A, Raymond S, Piamonteze C, Lapertot G, Baines C and Keller H 2015 Sci. Rep. 5 12528 [29] Strigari F, Willers T, Muro Y, Yutani K, Takabatake T, Hu Z, Agrestini S, Kuo C Y, Chin Y Y, Lin H J, Pi TW, Chen C T,Weschke E, Schierle E, Tanaka A, Haverkort M W, Tjeng L H and Severing A 2013 Phys. Rev. B 87 125119 [30] Chen J M, Chin Y Y, Valldor M, Hu Z, Lee J M, Haw S C, Hiraoka N, Ishii H, Pao C W, Tsuei K D, Lee J F, Lin H J, Jang L Y, Tanaka A, Chen C T and Tjeng L H 2014 J. Am. Chem. Soc. 136 1514 [31] Burnus T, Hu Z, Wu H, Cezar J C, Niitaka S, Takagi H, Chang C F, Brookes N B, Lin H J, Jang L Y, Tanaka A, Liang K S, Chen C T and Tjeng L H 2008 Phys. Rev. B 77 205111 [32] Ji Y, Wang W F, Ding Y F, Wang H X, Yang J K, Guo Q W, Ye X B, Shen X, Yao Y, Zhao J F, Jin C Q, Chan T S, Hu Z W, Long Y W and Yu R C 2022 J. Phys.: Condens. Matter 628 413624 [33] Mugiraneza S and Hallas A M 2022 Commun. Phys. 5 95 [34] Martins C, Aichhorn M and Biermann S 2017 J. Phys.: Condens. Matter 29 263001 [35] Pathak A K, Paudyal D, Mudryk Y, Gschneidner K A and Pecharsky V K 2013 Phys. Rev. Lett. 110 186405 [36] Ranaut D and Mukherjee K 2022 J. Phys.: Condens. Matter 34 315802 [37] Shao M J, Cao S X, Wang Y B, Yuan S J, Kang B J, Zhang J C, Wu A H and Xu J 2011 J. Cryst. Growth 318 947 [38] Cheng J G, Sui Y, Qian Z N, Liu Z G, Miao J P, Huang X Q, Lu Z, Li Y, Wang X J and Su W H 2005 Solid State Commun. 134 381 [39] Kobayashi K I, Kimura T, Sawada H, Terakura K and Tokura Y 1998 Nature 395 677 [40] Shanker V, Samal S L, Pradhan G K, Narayana C and Ganguli A K 2009 Solid State Sci. 11 562 [41] Oka D, Hirose Y, Nakao S, Fukumura T and Hasegawa T 2015 Phys. Rev. B 92 205102 [42] Wei H R, Chen S R, Zou Y T, Wang Y X, Yang M, Zhang Q H, Zou K, Gu L, Jiang K, Guo E J and Cheng Z G 2024 Phys. Rev. B 109 205404
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.