Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 060302    DOI: 10.1088/1674-1056/23/6/060302
GENERAL Prev   Next  

Quantum Fisher information and spin squeezing in one-axis twisting model

Zhong Wei (钟伟), Liu Jing (刘京), Ma Jian (马健), Wang Xiao-Guang (王晓光)
Zhejiang Institute of Modern Physics, Zhejiang University, Hangzhou 310027, China
Abstract  We investigate the dependence of the average parameter estimation precision (APEP), which is defined by the quantum Fisher information, on the polar angle of the initial coherent spin state |θ00> in a one-axis twisting model. Jin et al. [New J. Phys. 11 (2009) 073049] found that the spin squeezing sensitively depends on the polar angle θ0 of the initial coherent spin state. We show explicitly that the APEP is robust to the initial polar angle θ0 in the vicinity of π/2 and a near-Heisenberg limit ∝2/N in quantum single-parameter estimation may still be achieved for states created with the nonlinear evolution of the nonideal coherent spin states θ0π/2. Based on this model, we also consider the effects of the collective dephasing on spin squeezing and the APEP.
Keywords:  quantum Fisher information      spin squeezing      one-axis twisting model  
Received:  03 December 2013      Revised:  20 February 2014      Accepted manuscript online: 
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  06.20.-f (Metrology)  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2012CB921602) and the National Natural Science Foundation of China (Grant Nos. 11025527 and 10935010).
Corresponding Authors:  Wang Xiao-Guang     E-mail:  xgwang@zimp.zju.edu.cn

Cite this article: 

Zhong Wei (钟伟), Liu Jing (刘京), Ma Jian (马健), Wang Xiao-Guang (王晓光) Quantum Fisher information and spin squeezing in one-axis twisting model 2014 Chin. Phys. B 23 060302

[1] Fisher R A 1925 Proc. Cambridge Philos. Soc. 22 700
[2] Helstrom C W 1976 Quantum Detection and Estimation Theory (New York: Academic Press) p. 268
[3] Holevo A S 1982 Probabilistic and Statistical Aspects of Quantum Theory (Amsterdam: North-Holland) p. 276
[4] Braunstein S L and Caves C M 1994 Phys. Rev. Lett. 72 3439
[5] Braunstein S L, Caves C M and Milburn G J 1996 Ann. Phys. 247 135
[6] Zhong W, Sun Z, Ma J, Wang X G and Nori F 2013 Phys. Rev. A 87 022337
[7] Zhang Y Y, Chen Q H and Wang K L 2010 Phys. Rev. B 81 121105
[8] Rivas Á and Luis A 2010 Phys. Rev. Lett. 105 010403
[9] Girolami D, Tufarelli T and Adesso G 2013 Phys. Rev. Lett. 110 240402
[10] Pezze L and Smerzi A 2009 Phys. Rev. Lett. 102 100401
[11] Laskowski P W, Krischek R, Schwemmer C, Wieczorek W, Weinfurter H, Pezze L and Smerzi A 2012 Phys. Rev. A 85 022321
[12] Lu X M, Wang X G and Sun C P 2010 Phys. Rev. A 82 042103
[13] Berrada K 2013 Phys. Rev. A 88 035806
[14] Yan D, Liu Y and Song L J 2011 Acta Phys. Sin. 60 120302 (in Chinese)
[15] Wang X Q, Ma J, Zhang X H and Wang X G 2011 Chin. Phys. B 20 050510
[16] Sun Z, Lu X M and Wang X G 2010 Phys. Rev. A 82 022306
[17] Huang Y X, Zhong W, Sun Z and Wang X G 2012 Phys. Rev. A 86 012320
[18] Wineland D J, Bollinger J J, Itano W M, Moore F L and Heinzen D J 1992 Phys. Rev. A 46 R6797
[19] Wineland D J, Bollinger J J, Itano W M and Heinzen D J 1994 Phys. Rev. A 50 67
[20] Ma J, Wang X G, Sun C P and Nori F 2011 Phys. Rep. 509 89
[21] Xue P 2012 Chin. Phys. B 21 100306
[22] Kitagawa M and Ueda M 1993 Phys. Rev. A 47 5138
[23] Jin G R, Liu Y C and Liu W M 2009 New J. Phys. 11 073049
[24] Chen D W, Yan D and Song L J 2009 Acta Phys. Sin. 58 3679 (in Chinese)
[25] Liu W F, Xiong H N, Ma J and Wang X G 2010 Int. J. Theor. Phys. 49 1073
[26] Sun H G, Liu W F and Li C J 2011 Chin. Phys. B 20 090301
[27] Hald J, Sorensen J L, Schori C and Polzik E S 1999 Phys. Rev. Lett. 83 1319
[28] Takeuchi M, Ichihara S, Takano T, Kumakura M, Yabuzaki T and Takahashi Y 2005 Phys. Rev. Lett. 94 023003
[29] Kuzmich A, Mandel L and Bigelow N P 2000 Phys. Rev. Lett. 85 1594
[30] Chaudhury S, Merkel S, Herr T, Silberfarb A, Deutsch I H and Jessen P S 2007 Phys. Rev. Lett. 99 163002
[31] Fernholz T, Krauter H, Jensen K, Sherson J F, Sorensen A S and Polzik E S 2008 Phys. Rev. Lett. 101 073601
[32] Takano T, Fuyama M, Namiki R and Takahashi Y 2009 Phys. Rev. Lett. 102 033601
[33] Khodorkovsky Y, Kurizki G and Vardi A 2009 Phys. Rev. A 80 023609
[34] Liu Y C, Jin G R and You L 2010 Phys. Rev. A 82 045601
[35] Dorner U 2012 New J. Phys. 14 043011
[36] Ferrini G, Spehner D, Minguzzi A and Hekking F W J 2011 Phys. Rev. A 84 043628
[37] Giovannetti V, Lloyd S and Maccone L 2006 Phys. Rev. Lett. 96 010401
[38] Escher B M, de Matos Fillo R L and Davidovich L 2011 Nat. Phys. 7 406
[39] Demkowicz-Dobrzański R, Kolodyński J and Gută M 2012 Nat. Commun. 3 1063
[40] Yurke B, McCall S L and Klauder J R 1986 Phys. Rev. A 33 4033
[41] Hyllus P, Gühne O and Smerzi A 2010 Phys. Rev. A 82 012337
[42] Petrov P G, Oblak D, Alzar C L G, Kjægaard N and Polzik E S 2007 Phys. Rev. A 75 033803
[43] Chaudhury S, Smith G A, Schulz K and Jessen P S 2006 Phys. Rev. Lett. 96 043001
[44] Gross C, Zibold T, Nicklas E, Estève J and Oberthaler M K 2010 Nature 464 1165
[45] Riedel M F, Böhi P, Li Y, Hänsch T W, Sinatra A and Treutlein P 2010 Nature 464 1170
[46] Sønsen A, Duan L M, Cirac J I and Zoller P 2001 Nature 409 63
[47] Schleier-Smith M H, Leroux I D and Vuletic V 2010 Phys. Rev. A 81 021804
[1] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[2] Environmental parameter estimation with the two-level atom probes
Mengmeng Luo(罗萌萌), Wenxiao Liu(刘文晓), Yuetao Chen(陈悦涛), Shangbin Han(韩尚斌), and Shaoyan Gao(高韶燕). Chin. Phys. B, 2022, 31(5): 050304.
[3] Quantum metrology with coherent superposition of two different coded channels
Dong Xie(谢东), Chunling Xu(徐春玲), and Anmin Wang(王安民). Chin. Phys. B, 2021, 30(9): 090304.
[4] Effect of system-reservoir correlations on temperature estimation
Wen-Li Zhu(朱雯丽), Wei Wu(吴威), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2020, 29(2): 020501.
[5] Generation of atomic spin squeezing via quantum coherence: Heisenberg-Langevin approach
Xuping Shao(邵旭萍). Chin. Phys. B, 2020, 29(12): 124206.
[6] Optimal parameter estimation of open quantum systems
Yinghua Ji(嵇英华), Qiang Ke(柯强), and Juju Hu(胡菊菊). Chin. Phys. B, 2020, 29(12): 120303.
[7] Spin squeezing in Dicke-class of states with non-orthogonal spinors
K S Akhilesh, K S Mallesh, Sudha, Praveen G Hegde. Chin. Phys. B, 2019, 28(6): 060302.
[8] Quantum metrology with a non-Markovian qubit system
Jiang Huang(黄江), Wen-Qing Shi(师文庆), Yu-Ping Xie(谢玉萍), Guo-Bao Xu(徐国保), Hui-Xian Wu(巫慧娴). Chin. Phys. B, 2018, 27(12): 120301.
[9] Modulating quantum Fisher information of qubit in dissipative cavity by coupling strength
Danping Lin(林丹萍), Yu Liu(刘禹), Hong-Mei Zou(邹红梅). Chin. Phys. B, 2018, 27(11): 110303.
[10] Phase estimation of phase shifts in two arms for an SU(1,1) interferometer with coherent and squeezed vacuum states
Qian-Kun Gong(龚乾坤), Dong Li(李栋), Chun-Hua Yuan(袁春华), Ze-Yu Qu(区泽宇), Wei-Ping Zhang(张卫平). Chin. Phys. B, 2017, 26(9): 094205.
[11] Optimal quantum parameter estimation of two-qutrit Heisenberg XY chain under decoherence
Hong-ying Yang(杨洪应), Qiang Zheng(郑强), Qi-jun Zhi(支启军). Chin. Phys. B, 2017, 26(1): 010601.
[12] Tunable two-axis spin model and spin squeezing in two cavities
Lixian Yu(俞立先), Caifeng Li(李彩凤), Jingtao Fan(樊景涛), Gang Chen(陈刚), Tian-Cai Zhang(张天才), Suotang Jia(贾锁堂). Chin. Phys. B, 2016, 25(5): 050301.
[13] Enhancing parameter precision of optimal quantum estimation by quantum screening
Huang Jiang(黄江), Guo You Neng(郭有能), Xie Qin(谢钦). Chin. Phys. B, 2016, 25(2): 020303.
[14] Dynamics of quantum Fisher information in a two-level system coupled to multiple bosonic reservoirs
Wang Guo-You (王国友), Guo You-Neng (郭有能), Zeng Ke (曾可). Chin. Phys. B, 2015, 24(11): 114201.
[15] Enhancing the precision of phase estimation by weak measurement and quantum measurement reversal
He Zhi (贺志), Yao Chun-Mei (姚春梅). Chin. Phys. B, 2014, 23(11): 110601.
No Suggested Reading articles found!