Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(10): 100306    DOI: 10.1088/1674-1056/21/10/100306
GENERAL Prev   Next  

Improved frequency standard via weighted graph states

Xue Peng (薛鹏)
Department of Physics, Southeast University, Nanjing 211189, China
Abstract  We study the spin squeezing property of weighted graph states, which can be used to improve sensitivity in interferometry. We study the time evolution of spin squeezing under local decoherence acting independently on each qubit. Based on the analysis, the spin squeezing of the weighted graph states is somehow robust in the presence of decoherence and the decoherence limit in the improvement of the interferometric sensitivity is still achievable. Furthermore, one can obtain the optimal improvement of sensitivity by tuning the weighted of each edges of the weighted graph state.
Keywords:  spin squeezing      weighted graph states      interferometric sensitivity  
Received:  14 February 2012      Revised:  19 April 2012      Accepted manuscript online: 
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.Pp (Quantum error correction and other methods for protection against decoherence)  
  06.20.Dk (Measurement and error theory)  
  06.30.Ft (Time and frequency)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11004029 and 11174052), the Natural Science Foundation of Jiangsu Province of China (Grant No. BK2010422), the Ph. D. Program of the Ministry of Education of China, the Excellent Young Teachers Program of Southeast University and the National Basic Research Development Program of China (Grant No. 2011CB921203).
Corresponding Authors:  Xue Peng     E-mail:  gnep.eux@gmail.com

Cite this article: 

Xue Peng (薛鹏) Improved frequency standard via weighted graph states 2012 Chin. Phys. B 21 100306

[1] Caves C M 1981 Phys. Rev. D 23 1693
[2] Yurke B 1986 Phys. Rev. Lett. 56 1515
[3] Kitagawa M and Ueda M 1991 Phys. Rev. Lett. 67 1852
[4] Ulam-Orgikh D and Kitagawa M 2001 Phys. Rev. A 64 052106
[5] Wineland D J, Bollinger J J, Itano W M, Moore F L and Heinzen D J 1992 Phys. Rev. A 46 R6797
[6] Cappellaro P and Lukin M D 2009 Phys. Rev. A 80 032311
[7] Kitagawa M and Ueda M 1993 Phys. Rev. A 47 5138
[8] Jacobson J, Björt G, Chuang I and Yamamoto Y 1995 Phys. Rev. Lett. 74 4835
[9] Huelga S F, Macchiavello C, Pellizzari T, Ekert A K, Plenio M B and Cirac J I 1997 Phys. Rev. Lett. 79 3865
[10] Biregel H J and Raussendorf R 2001 Phys. Rev. Lett. 86 910
[11] Hein M, Dür W and Briegel H J 2004 Phys. Rev. A 69 062311
[12] Rosenkranz M and Jaksch D 2009 Phys. Rev. A 79 022103
[13] Agarwal G S and Puri R P 1994 Phys. Rev. A 49 4968
[14] Wang X and Sanders B C 2003 Phys. Rev. A 68 012101
[15] Pezzé L and Smerzi A 2009 Phys. Rev. Lett. 102 100401
[16] Ramsey N F 1963 Molecular Beams (London: Oxford University Press)
[17] André A and Lukin M D 2002 Phys. Rev. A 65 053819
[18] Stockton J K, Geremia J M, Doherty A C and Mabuchi H 2003 Phys. Rev. A 67 022112
[1] Generation of atomic spin squeezing via quantum coherence: Heisenberg-Langevin approach
Xuping Shao(邵旭萍). Chin. Phys. B, 2020, 29(12): 124206.
[2] Spin squeezing in Dicke-class of states with non-orthogonal spinors
K S Akhilesh, K S Mallesh, Sudha, Praveen G Hegde. Chin. Phys. B, 2019, 28(6): 060302.
[3] Tunable two-axis spin model and spin squeezing in two cavities
Lixian Yu(俞立先), Caifeng Li(李彩凤), Jingtao Fan(樊景涛), Gang Chen(陈刚), Tian-Cai Zhang(张天才), Suotang Jia(贾锁堂). Chin. Phys. B, 2016, 25(5): 050301.
[4] Quantum Fisher information and spin squeezing in one-axis twisting model
Zhong Wei (钟伟), Liu Jing (刘京), Ma Jian (马健), Wang Xiao-Guang (王晓光). Chin. Phys. B, 2014, 23(6): 060302.
No Suggested Reading articles found!