Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(2): 029401    DOI: 10.1088/1674-1056/25/2/029401
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS Prev  

A 0.33-THz second-harmonic frequency-tunable gyrotron

Zheng-Di Li(李铮迪)1,2, Chao-Hai Du(杜朝海)3, Xiang-Bo Qi(戚向波)3, Li Luo(罗里)1,2, Pu-Kun Liu(刘濮鲲)3
1. Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China;
3. School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
Abstract  Dynamics of the axial mode transition process in a 0.33-THz second-harmonic gyrotron is investigated to reveal the physical mechanism of realizing broadband frequency tuning in an open cavity circuit. A new interaction mechanism about propagating waves, featured by wave competition and wave cooperation, is presented and provides a new insight into the beam-wave interaction. The two different features revealed in the two different operation regions of low-order axial modes (LOAMs) and high-order axial modes (HOAMs) respectively determine the characteristic of the overall performance of the device essentially. The device performance is obtained by the simulation based on the time-domain nonlinear theory and shows that using a 12-kV/150-mA electron beam and TE-3,4 mode, the second harmonic gyrotron can generate terahertz radiations with frequency-tuning ranges of about 0.85 GHz and 0.60 GHz via magnetic field and beam voltage tuning, respectively. Additionally, some non-stationary phenomena in the mode startup process are also analyzed. The investigation in this paper presents guidance for future developing high-performance frequency-tunable gyrotrons toward terahertz applications.
Keywords:  gyrotron      mode transition      second harmonic      frequency tuning      terahertz  
Received:  27 June 2015      Revised:  26 October 2015      Accepted manuscript online: 
PACS:  94.20.wj (Wave/particle interactions)  
  84.40.Ik (Masers; gyrotrons (cyclotron-resonance masers))  
  07.57.Hm (Infrared, submillimeter wave, microwave, and radiowave sources)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61471007, 61531002, 61522101, and 11275206) and the Seeding Grant for Medicine and Information Science of Peking University, China (Grant No. 2014-MI-01).
Corresponding Authors:  Pu-Kun Liu     E-mail:  pkliu@pku.edu.cn

Cite this article: 

Zheng-Di Li(李铮迪), Chao-Hai Du(杜朝海), Xiang-Bo Qi(戚向波), Li Luo(罗里), Pu-Kun Liu(刘濮鲲) A 0.33-THz second-harmonic frequency-tunable gyrotron 2016 Chin. Phys. B 25 029401

[1] Siegel P H 2002 IEEE Trans. Microwave Theory Technol. 50 910
[2] Fitch M J and Osiander R 2004 Johns Hopkins APL Tech. Dig. 25 348
[3] Nusinovich G S, Pu R F, Antonsen T M Jr, Sinitsyn O V, Rodgers J, Mohamed A, Silverman J, Al-Sheikhly M, Dimant Y S, Milikh G M, Glyavin M Y, Luchinin A G, Kopelovich E A and Granatstein V L 2011 Journal of Infrared Millimeter Terahz Waves 32 380
[4] Linfield E 2007 Nat. Photon. 1 257
[5] Idehara T, Saito T, Ogawa I, Mitsudo S, Tatematsu Y and Sabchevski S 2008 Thin Solid Films 517 1503
[6] Booske J H, Dobbs R J, Joye C D, Kory C L, Neil G R, Park G S, Park J and Temkin R J 2011 IEEE Trans. Terahertz Sci. Technol. 1 54
[7] Nanni E A, Barnes A B, Griffin R G and Temkin R J 2011 IEEE Trans. Terahertz Sci. Technol. 1 145
[8] Glyavin M Y, Luchinin A G, Manuilov V N and Nusinovich G S 2008 IEEE Trans. Plasma Sci. 36 591
[9] Chu K R 2004 Rev. Mod. Phys. 76 489
[10] Zapevalov V E, Dubrov V V, Fix A S, Kopelovich E A, Kuftin A N, Malygin O V, Manuilov V N, Moiseev M A, Sedov A S, Venediktov N P and Zavolsky N A 2009 34th International Conference on Infrared, Millimeter, and Terahertz Waves, September 21-25, 2009, Busan, Korea, p. 1
[11] Hornstein M K, Bajaj V S, Griffin R G, Kreischer K E, Mastovsky I, Shapiro M A, Sirigiri J R and Temkin R J 2005 IEEE Trans. Electron Dev. 52 798
[12] Torrezan A C, Han S T, Shapiro M A, Sirigiri J R and Temkin R J 2008 33th International Conference on Infrared, Millimeter, and Terahertz Waves, September 15-19, 2008, Pasadena, SUA, p. 1
[13] Torrezan A C, Han S T, Mastovsky I, Shapiro M A, Sirigiri J R, Temkin R J, Barnes A B and Griffin R G 2010 IEEE Trans. Plasma Sci. 38 1150
[14] Idehara T, Saito T, Ogawa I, Mitsudo S, Tatematsu Y, Agusu L, Mori H and Kobayashi S 2008 Appl. Magn. Reson. 34 265
[15] Idehara T, Kosuga K, Agusu L, Ikeda R, Ogawa I, Saito T, Matsuki Y, Ueda K and Fujiwara T 2010 Journal of Infrared, Millimeter, and Terahertz Waves 31 775
[16] Jain C A, Verma A, Kumar A, Kartikeyan M V, Borie E and Thumm M 2011 IEEE International Vacuum Electronics Conference, February 21-24, 2011, Bangalore, India, p. 59
[17] Levush B and Antonsen Jr. T M 1990 IEEE Trans. Plasma Sci. 18 260
[18] Fliflet A W, Lee R C, Gold S H, Manheimer W M and Ott E 1991 Phys. Rev. A 43 6166
[19] Nusinovich G S and BottonM 2001 Phys. Plasmas 8 1029
[20] Nusinovich G S, Yeddulla M, Antonsen T M and Vlasov A N 2006 Phys. Rev. Lett. 96 125101
[21] Liu P K, Borie E and Kartikeyan M V 2000 Int. J. Infrared and Millim. Waves 21 1917
[22] Liu P K, Borie E 2000 Int. J. Infrared and Millim. Waves 21 855
[23] Danly B and Temkin R J 1986 Phys. Fluids 29 561
[24] Fliflet A W and Read M E 1981 Int. J. Electron. 51 475
[25] Temkin R J 1981 Int. J. Infrared and Millimeter. Waves 2 629
[26] Kreischer K E and Temkin R J 1980 Int. J. Infrared Millimeter. Waves 1 195
[27] Yeddulla M, Nusinovich G S and Antonsen T M Jr. 2003 Phys. Plasmas 10 4513
[28] Chu K R, Chen H Y, Hung C L, Chang T H, Barnett L R, Chen S H, Yang T T and Dialetis D J 1999 IEEE Trans. Plasma Sci. 27 391
[29] Yu S, Li H F, Xie Z L and Luo Y 2001 Acta Phys. Sin. 50 1979 (in Chinese)
[30] Luo Y T and Tang C J 2011 Acta Phys. Sin. 60 014104 (in Chinese)
[31] Jawla S, Ni Q Z, Barnes A B, Guss W C, Daviso E, Herzfeld J, Griffin R and Temkin R J 2013 Journal of Infrared, Millimeter, and Terahertz Waves 34 42
[1] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[2] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[5] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[6] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[7] Second harmonic generation from precise diamond blade diced ridge waveguides
Hui Xu(徐慧), Ziqi Li(李子琦), Chi Pang(逄驰), Rang Li(李让), Genglin Li(李庚霖), Sh. Akhmadaliev, Shengqiang Zhou(周生强), Qingming Lu(路庆明), Yuechen Jia(贾曰辰), and Feng Chen(陈峰). Chin. Phys. B, 2022, 31(9): 094209.
[8] Photon-interactions with perovskite oxides
Hongbao Yao(姚洪宝), Er-Jia Guo(郭尔佳), Chen Ge(葛琛), Can Wang(王灿), Guozhen Yang(杨国桢), and Kuijuan Jin(金奎娟). Chin. Phys. B, 2022, 31(8): 088106.
[9] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[10] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[11] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[12] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[13] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[14] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[15] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
No Suggested Reading articles found!