Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(8): 087306    DOI: 10.1088/1674-1056/24/8/087306
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Influence of the AlGaN barrier thickness on polarization Coulomb field scattering in an AlGaN/AlN/GaN heterostructure field-effect transistor

Lv Yuan-Jie (吕元杰)a, Feng Zhi-Hong (冯志红)a, Gu Guo-Dong (顾国栋)a, Yin Jia-Yun (尹甲运)a, Fang Yu-Long (房玉龙)a, Wang Yuan-Gang (王元刚)a, Tan Xin (谭鑫)a, Zhou Xing-Ye (周幸叶)a, Lin Zhao-Jun (林兆军)b, Ji Zi-Wu (冀子武)b, Cai Shu-Jun (蔡树军)a
a National Key Laboratory of Application Specific Integrated Circuit (ASIC), Hebei Semiconductor Research Institute, Shijiazhuang 050051, China;
b School of Physics, Shandong University, Jinan 250100, China
Abstract  In this study rectangular AlGaN/AlN/GaN heterostructure field-effect transistors (HFETs) with 22-nm and 12-nm AlGaN barrier layers are fabricated, respectively. Using the measured capacitance–voltage and current–voltage characteristics of the prepared devices with different Schottky areas, it is found that after processing the device, the polarization Coulomb field (PCF) scattering is induced and has an important influence on the two-dimensional electron gas electron mobility. Moreover, the influence of PCF scattering on the electron mobility is enhanced by reducing the AlGaN barrier thickness. This leads to the quite different variation of the electron mobility with gate bias when compared with the AlGaN barrier thickness. This mainly happens because the thinner AlGaN barrier layer suffers from a much stronger electrical field when applying a gate bias, which gives rise to a stronger converse piezoelectric effect.
Keywords:  AlGaN/AlN/GaN      barrier layer thickness      electron mobility      polarization Coulomb field scattering  
Received:  14 January 2015      Revised:  24 February 2015      Accepted manuscript online: 
PACS:  73.61.Ey (III-V semiconductors)  
  77.22.Ej (Polarization and depolarization)  
  72.10.-d (Theory of electronic transport; scattering mechanisms)  
  73.50.Dn (Low-field transport and mobility; piezoresistance)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61306113 and11174182).
Corresponding Authors:  Feng Zhi-Hong     E-mail:  ga917vv@163.com

Cite this article: 

Lv Yuan-Jie (吕元杰), Feng Zhi-Hong (冯志红), Gu Guo-Dong (顾国栋), Yin Jia-Yun (尹甲运), Fang Yu-Long (房玉龙), Wang Yuan-Gang (王元刚), Tan Xin (谭鑫), Zhou Xing-Ye (周幸叶), Lin Zhao-Jun (林兆军), Ji Zi-Wu (冀子武), Cai Shu-Jun (蔡树军) Influence of the AlGaN barrier thickness on polarization Coulomb field scattering in an AlGaN/AlN/GaN heterostructure field-effect transistor 2015 Chin. Phys. B 24 087306

[1] Yu E T, Sullivan G J, Asbeck P M, Wang C D, Qiao D and Lau S S 1997 Appl. Phys. Lett. 71 2794
[2] Ji D, Liu B, Lu Y W, Zou M and Fan B L 2012 Chin. Phys. B 21 067201
[3] Chung J W, Hoke W E, Chumbes E M and Palacios T 2010 IEEE Electron Dev. Lett. 31 195
[4] Micovic M, Kurdoghlian A, Margomenos A, Brown D F, Shinohara K, Burnham S, Milosavljevic I, R Bowen, Williams A J, Hashimoto P, Grabar R, Butler C, Schmitz A, Willadsen P J and Chow D H 2012 IEEE MTT-S International Canada 1
[5] Lv Y J, Lin Z J, Zhang Y, Meng L M, Luan C B, Cao Z F, Chen H and Wang Z G 2011 Appl Phys. Lett. 98 123512
[6] Lv Y J, Lin Z J, Meng L M, Luan C B, Cao Z F, Yu Y X, Feng Z H and Wang Z G 2012 Nanoscale Res. Lett. 7 434
[7] Zhao Z J, Lin Z J, Corrigan T D, Wang Z, You Z D and Wang Z G 2007 Appl. Phys. Lett. 91 173507
[8] Luan C B, Lin Z J, Lv Y J, Meng L G, Yu Y X, Cao Z F, Chen H and Wang Z G 2012 Appl. Phys. Lett. 101 113501
[9] Lin Z J, Zhao J Z, Corrigan T D, Wang Z, You Z D, Wang Z G and Lu W 2008 J. Appl. Phys. 103 044503
[10] Lv Y J, Lin Z J, Yu Y X, Meng L M, Cao Z F, Luan C B and Wang Z G 2012 Chin. Phys. B 21 097104
[11] Lv Y J, Lin Z J, Meng L M, Yu Y X, Luan C B, Cao Z F, Chen H, Sun B Q and Wang Z G 2011 Appl. Phys. Lett. 99 123504
[12] Shen B, Someya T and Arakawa Y 2000 Appl. Phys. Lett. 76 2746
[13] Miyoshi M, Egawa T and Ishikawa H 2005 J. Vac. Sci. Technol. B 23 1527
[1] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[2] Interface modulated electron mobility enhancement in core-shell nanowires
Yan He(贺言), Hua-Kai Xu(许华慨), and Gang Ouyang(欧阳钢). Chin. Phys. B, 2022, 31(11): 110502.
[3] Heterogeneous integration of InP HEMTs on quartz wafer using BCB bonding technology
Yan-Fu Wang(王彦富), Bo Wang(王博), Rui-Ze Feng(封瑞泽), Zhi-Hang Tong(童志航), Tong Liu(刘桐), Peng Ding(丁芃), Yong-Bo Su(苏永波), Jing-Tao Zhou(周静涛), Feng Yang(杨枫), Wu-Chang Ding(丁武昌), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018502.
[4] Removal of GaN film over AlGaN with inductively coupled BCl3/Ar atomic layer etch
Jia-Le Tang(唐家乐) and Chao Liu(刘超). Chin. Phys. B, 2022, 31(1): 018101.
[5] Fang-Howard wave function modelling of electron mobility in AlInGaN/AlN/InGaN/GaN double heterostructures
Yao Li(李姚) and Hong-Bin Pu(蒲红斌). Chin. Phys. B, 2021, 30(9): 097201.
[6] C band microwave damage characteristics of pseudomorphic high electron mobility transistor
Qi-Wei Li(李奇威), Jing Sun(孙静), Fu-Xing Li(李福星), Chang-Chun Chai(柴常春), Jun Ding(丁君), and Jin-Yong Fang(方进勇). Chin. Phys. B, 2021, 30(9): 098502.
[7] Effects of notch structures on DC and RF performances of AlGaN/GaN high electron mobility transistors
Hao Zou(邹浩), Lin-An Yang(杨林安), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(4): 040502.
[8] High performance InAlN/GaN high electron mobility transistors for low voltage applications
Minhan Mi(宓珉瀚), Meng Zhang(张濛), Sheng Wu(武盛), Ling Yang(杨凌), Bin Hou(侯斌), Yuwei Zhou(周雨威), Lixin Guo(郭立新), Xiaohua Ma(马晓华), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(5): 057307.
[9] Characteristics of AlGaN/GaN high electron mobility transistors on metallic substrate
Minglong Zhao(赵明龙), Xiansheng Tang(唐先胜), Wenxue Huo(霍雯雪), Lili Han(韩丽丽), Zhen Deng(邓震), Yang Jiang(江洋), Wenxin Wang(王文新), Hong Chen(陈弘), Chunhua Du(杜春花), Haiqiang Jia(贾海强). Chin. Phys. B, 2020, 29(4): 048104.
[10] Effect of defects properties on InP-based high electron mobility transistors
Shu-Xiang Sun(孙树祥), Ming-Ming Chang(常明铭), Meng-Ke Li(李梦珂), Liu-Hong Ma(马刘红), Ying-Hui Zhong(钟英辉), Yu-Xiao Li(李玉晓), Peng Ding(丁芃), Zhi Jin(金智), Zhi-Chao Wei(魏志超). Chin. Phys. B, 2019, 28(7): 078501.
[11] Effects of growth temperature and metamorphic buffer on electron mobility of InAs film grown on Si substrate by molecular beam epitaxy
Jing Zhang(张静), Hongliang Lv(吕红亮), Haiqiao Ni(倪海桥), Shizheng Yang(杨施政), Xiaoran Cui(崔晓然), Zhichuan Niu(牛智川), Yimen Zhang(张义门), Yuming Zhang(张玉明). Chin. Phys. B, 2019, 28(2): 028101.
[12] The origin of distorted intensity pattern sensed by a lens and antenna coupled AlGaN/GaN-HEMT terahertz detector
Xiang Li(李想), Jian-Dong Sun(孙建东), Hong-Juan Huang(黄宏娟), Zhi-Peng Zhang(张志鹏), Lin Jin(靳琳), Yun-Fei Sun(孙云飞), V V Popov, Hua Qin(秦华). Chin. Phys. B, 2019, 28(11): 118502.
[13] High-performance InAlGaN/GaN enhancement-mode MOS-HEMTs grown by pulsed metal organic chemical vapor deposition
Ya-Chao Zhang(张雅超), Zhi-Zhe Wang(王之哲), Rui Guo(郭蕊), Ge Liu(刘鸽), Wei-Min Bao(包为民), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2019, 28(1): 018102.
[14] Integration of a field-effect-transistor terahertz detector with a diagonal horn antenna
Xiang Li(李想), Jian-dong Sun(孙建东), Zhi-peng Zhang(张志鹏), V V Popov, Hua Qin(秦华). Chin. Phys. B, 2018, 27(6): 068506.
[15] Two-dimensional electron gas characteristics of InP-based high electron mobility transistor terahertz detector
Jin-Lun Li(李金伦), Shao-Hui Cui(崔少辉), Jian-Xing Xu(徐建星), Xiao-Ran Cui(崔晓然), Chun-Yan Guo(郭春妍), Ben Ma(马奔), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2018, 27(4): 047101.
No Suggested Reading articles found!