Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(4): 048701    DOI: 10.1088/1674-1056/adaccd
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Multiscale structural complexity analysis of neuronal activity in suprachiasmatic nucleus: Insights from tetrodotoxin-induced disruptions

Ping Wang(王萍)1, Changgui Gu(顾长贵)2,†, and Huijie Yang(杨会杰)2
1 School of Science, Jiangsu University of Science and Technology, Zhenjiang 212100, China;
2 Business School, University of Shanghai for Science and Technology, Shanghai 200433, China
Abstract  The suprachiasmatic nucleus in the hypothalamus is the master circadian clock in mammals, coordinating physiological processes with the 24-hour day-night cycle. Comprising various cell types, the suprachiasmatic nucleus (SCN) integrates environmental signals to maintain complex and robust circadian rhythms. Understanding the complexity and synchrony within SCN neurons is essential for effective circadian clock function. Synchrony involves coordinated neuronal firing for robust rhythms, while complexity reflects diverse activity patterns and interactions, indicating adaptability. Interestingly, the SCN retains circadian rhythms in vitro, demonstrating intrinsic rhythmicity. This study introduces the multiscale structural complexity method to analyze changes in SCN neuronal activity and complexity at macro and micro levels, based on Bagrov et al.'s approach. By examining structural complexity and local complexities across scales, we aim to understand how tetrodotoxin, a neurotoxin that inhibits action potentials, affects SCN neurons. Our method captures critical scales in neuronal interactions that traditional methods may overlook. Validation with the Goodwin model confirms the reliability of our observations. By integrating experimental data with theoretical models, this study provides new insights into the effects of tetrodotoxin (TTX) on neuronal complexities, contributing to the understanding of circadian rhythms.
Keywords:  suprachiasmatic nucleus      circadian rhythm      complexity      synchrony      multiscale structural complexity  
Received:  13 November 2024      Revised:  18 December 2024      Accepted manuscript online:  22 January 2025
PACS:  87.18.Yt (Circadian rhythms)  
  05.45.Xt (Synchronization; coupled oscillators)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12275179, 11875042, and 12150410309) and the Natural Science Foundation of Shanghai (Grant No. 21ZR1443900).
Corresponding Authors:  Changgui Gu     E-mail:  gu_changgui@163.com

Cite this article: 

Ping Wang(王萍), Changgui Gu(顾长贵), and Huijie Yang(杨会杰) Multiscale structural complexity analysis of neuronal activity in suprachiasmatic nucleus: Insights from tetrodotoxin-induced disruptions 2025 Chin. Phys. B 34 048701

[1] Pittendrigh C S and Daan S 1976 Journal Of Comparative Physiology A-Neuroethology Sensory Neural and Behavioral Physiology 106 223
[2] Pittendrigh C S 1993 Annual Review of Physiology 55 16
[3] Refinetti R 2006 Circadian Physiology 2nd edn. (Boca Raton, Florida: CRC Press)
[4] Welsh D K, Takahashi J S and Kay S A 2010 Annual Review of Physiology 72 551
[5] Abraham U, Granada A E,Westermark P O, et al. 2010 Molecular Systems Biology 6 438
[6] Campuzano A, Vilaplana J, Cambras T, et al. 1998 Physiology and Behavior 63 171
[7] Hastings M H, Maywood E S and Brancaccio M 2018 Nature Reviews Neuroscience 19 453
[8] Michel S and Meijer J H 2020 European Journal of Neuroscience 51 482
[9] Mohawk J A and Takahashi J S 2011 Trends in Neurosciences 34 349
[10] Nakamura W, Yamazaki S, Takasu N N, et al. 2005 The Journal of Neurosciences: the Official Journal of the Society for Neuroscience 25 5481
[11] Liu C, Weaver D R, Strogatz S H, et al. 1997 Cell 91 855
[12] Ohta H, Yamazaki S and McMahon D G 2005 Nature Reviews. Neuroscience 8 267
[13] Yamaguchi S, Isejima H, Matsuo T, et al. 2003 Science 302 1408
[14] Abel J H 2018 A Computational Approach to Analysis and Control of the Mammalian Circadian Oscillator
[15] Schmal C, Herzog E D and Herzel H 2018 Journal of Biological Rhythms 33 84
[16] Abel J H, Meeker K, Granados-Fuentes D, et al. 2016 Proc. Natl. Acad. Sci. USA 113 4512
[17] Gu C, Gu X,Wang P, et al. 2019 Journal of Biological Rhythms 34 515
[18] Yoshikawa T, Pauls S, Foley N, et al. 2021 eNeuro 8 ENEURO.0078- 21.2021
[19] Comas M, De Pietri Tonelli D, Berdondini L, et al. 2024 Trends in Neurosciences 47 36
[20] GilletteMU, DeMarco S J, Ding J M, et al. 1993 Journal of Biological Rhythms 8 Suppl S53-58
[21] Mitchell J W, Atkins N Jr, Sweedler J V, et al. 2011 Frontiers in Neuroendocrinology 32 377
[22] Mesgar S, Eskandari K, Karimian-Sani-Varjovi H, et al. 2023 Neurochemical Research 48 3420
[23] Wang P, Gu C G, Yang H J, et al. 2023 Physica A 609 128358
[24] Bagrov A A, Iakovlev I A, Iliasov A A, et al. 2020 Proc. Natl. Acad. Sci. USA 117 30241
[25] Wang P, Gu C G, Yang H J, et al. 2022 Chaos Soliton. Fract. 164 112721
[26] Locke J C,Westermark P O, Kramer A, et al. 2008 BMC Systems Biology 2 22
[27] Gonze D, Bernard S, Waltermann C, et al. 2005 Biophysical Journal 89 120
[28] Gu C G, Wang J X, Wang J X, et al. 2011 Phys. Rev. E 83 046224
[29] Xu J S, Gu C G, Pumir A, et al. 2012 Phys. Rev. E 86 041903
[30] Gu C G, Xu J S, Liu Z H, et al. 2013 Phys. Rev. E 88 022702
[31] Gu C G, Liang X M, Yang H J, et al. 2016 Scientific Reports 6 21412
[32] Hafner M, Koeppl H and Gonze D 2012 PLoS Computational Biology 8 e1002419
[33] Honma S, NakamuraW, Shirakawa T, et al. 2004 Neuroscience Letters 358 173
[1] A novel variable-order fractional chaotic map and its dynamics
Zhouqing Tang(唐周青), Shaobo He(贺少波), Huihai Wang(王会海), Kehui Sun(孙克辉), Zhao Yao(姚昭), and Xianming Wu(吴先明). Chin. Phys. B, 2024, 33(3): 030503.
[2] On fractional discrete financial system: Bifurcation, chaos, and control
Louiza Diabi, Adel Ouannas, Amel Hioual, Shaher Momani, and Abderrahmane Abbes. Chin. Phys. B, 2024, 33(10): 100201.
[3] Free running period affected by network structures of suprachiasmatic nucleus neurons exposed to constant light
Jian Zhou(周建), Changgui Gu(顾长贵), Yuxuan Song(宋雨轩), and Yan Xu(许艳). Chin. Phys. B, 2023, 32(9): 098701.
[4] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[5] Efficient self-testing system for quantum computations based on permutations
Shuquan Ma(马树泉), Changhua Zhu(朱畅华), Min Nie(聂敏), and Dongxiao Quan(权东晓). Chin. Phys. B, 2021, 30(4): 040305.
[6] Dynamical analysis, circuit realization, and application in pseudorandom number generators of a fractional-order laser chaotic system
Chenguang Ma(马晨光), Santo Banerjee, Li Xiong(熊丽), Tianming Liu(刘天明), Xintong Han(韩昕彤), and Jun Mou(牟俊). Chin. Phys. B, 2021, 30(12): 120504.
[7] Entrainment range affected by the difference in sensitivity to light-information between two groups of SCN neurons
Bao Zhu(朱宝), Jian Zhou(周建), Mengting Jia(贾梦婷), Huijie Yang(杨会杰), Changgui Gu(顾长贵). Chin. Phys. B, 2020, 29(6): 068702.
[8] Controlled unknown quantum operations on hybrid systems
Yong He(何勇), Ming-Xing Luo(罗明星). Chin. Phys. B, 2016, 25(12): 120304.
[9] Multi-scale complexity entropy causality plane: An intrinsic measure for indicating two-phase flow structures
Dou Fu-Xiang (窦富祥), Jin Ning-De (金宁德), Fan Chun-Ling (樊春玲), Gao Zhong-Ke (高忠科), Sun Bin (孙斌). Chin. Phys. B, 2014, 23(12): 120502.
[10] Complexity analyses of multi-wing chaotic systems
He Shao-Bo (贺少波), Sun Ke-Hui (孙克辉), Zhu Cong-Xu (朱从旭). Chin. Phys. B, 2013, 22(5): 050506.
[11] Correlation between detrended fluctuation analysis and the Lempel–Ziv complexity in nonlinear time series analysis
Tang You-Fu (唐友福), Liu Shu-Lin (刘树林), Jiang Rui-Hong (姜锐红), Liu Ying-Hui (刘颖慧). Chin. Phys. B, 2013, 22(3): 030504.
[12] Characteristics analysis of acupuncture electroencephalograph based on mutual information Lempel–Ziv complexity
Luo Xi-Liu(罗昔柳), Wang Jiang(王江), Han Chun-Xiao(韩春晓), Deng Bin(邓斌), Wei Xi-Le(魏熙乐), and Bian Hong-Rui(边洪瑞) . Chin. Phys. B, 2012, 21(2): 028701.
[13] Encoding entanglement-assisted quantum stabilizer codes
Wang Yun-Jiang(王云江), Bai Bao-Ming(白宝明), Li Zhuo(李卓), Peng Jin-Ye(彭进业), and Xiao He-Ling(肖鹤玲) . Chin. Phys. B, 2012, 21(2): 020304.
[14] A complexity measure approach based on forbidden patterns and correlation degree
Wang Fu-Lai(王福来). Chin. Phys. B, 2010, 19(6): 060515.
[15] An improvement on measure methods of the complexity theory and its applications
Wang Fu-Lai(王福来) and Yang Hui-Huang(杨辉煌). Chin. Phys. B, 2009, 18(9): 4042-4048.
No Suggested Reading articles found!