Generation of acoustical Bessel-like collimated beams using ring-excited flat plate structure transducers
Ming-Liang Han(韩明亮)1, Ruo-Yu Tang(唐若昱)2, Ning Ma(马宁)1, Guang-Bin Zhang(张光斌)1,†, and Xiao-Feng Zhang(张小凤)1
1 Shaanxi Key Laboratory of Ultrasonics, College of Physics and Information Technology, Shaanxi Normal University, Xian 710119, China; 2 College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
Abstract This paper proposes a method to generate Bessel-like collimated beams with suppressed side lobes using the flexural vibration modes of a fixed boundary circular plate, which is excited by a longitudinally vibrating transducer in a ring excitation manner. The factors affecting the generation of Bessel-like collimated beams are investigated by theoretical analysis, numerical simulation and experimental methods. The results indicate that Bessel-like wave can be generated by a thin circular plate with fixed boundaries. The third-order mode of the circular plate can be modified to generate a collimated beam with suppressing side lobes when it is excited in a ring excitation manner and the excitation position lies between the first two nodal circles of the plate. As the excitation radius increases, the main lobe width of the resulting Bessel-like collimated beam decreases, the extent of the focusing region increases, and the amplitude of the side lobes initially increases and then decreases. Based on the simulation results, a prototype Bessel-like collimated beam generation system is made and measured experimentally. The experimental results are in good agreement with the numerical results. The Bessel-like collimated beam can be generated by the proposed system, which has potential application in the fields of long-range detection, imaging of highly attenuated materials, and airflow acceleration.
Ming-Liang Han(韩明亮), Ruo-Yu Tang(唐若昱), Ning Ma(马宁), Guang-Bin Zhang(张光斌), and Xiao-Feng Zhang(张小凤) Generation of acoustical Bessel-like collimated beams using ring-excited flat plate structure transducers 2025 Chin. Phys. B 34 040702
[1] Durnin J 1987 J. Opt. Soc. Am. A 4 651 [2] Durnin J, Miceli J J Jr and Eberly J H 1987 Phys. Rev. Lett. 58 1499 [3] Antonacci G, Caprini D and Ruocco G 2019 Appl. Phys. Lett. 114 013502 [4] Qiao X L, Cheng X M, Zhang Q, Zhang W D, Ren Z Y and Bai J T 2023 Chin. Phys. B 32 048703 [5] Jiménez N, Picó R, Sánchez-Morcillo V, Romero-García V, García- Raffi L M and Staliunas 2016 Phys. Rev. E 94 053004 [6] Mitri F G and Fellah Z E A 2008 IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 55 2469 [7] Chen B, Wu Y, Ao Z, Cai H, Nunez A, Liu Y, Foley J, Nephew K, Lu X and Guo F 2019 Lab. Chip. 19 1755 [8] Wang A T, Yu L H, Li J F and Liang X Y 2023 Chin. Phys. B 32 044201 [9] Li S Y, Shi J Y, Zhang X F and Zhang G B 2019 J. Acoust. Soc. Am. 145 3233 [10] McGloin D and Dholakia K 2005 Contemp Phys. 46 15 [11] Vetter C, Steinkopf R, Bergner K, Ornigotti M, Nolte S, Gross H and Szameit A 2019 Laser Photon. Rev. 13 1900103 [12] Ji J Y, Zheng Z G, Zhu J L, Wang L, Wang X G and Zhao S M 2024 Chin. Phys. B 33 014204 [13] Lu J Y and Greenleaf J F 1990 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37 438 [14] Lu J Y and Greenleaf J F 1992 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39 19 [15] Chen Y, Gao K, Davis E S, Sinha D N, Pantea C and Huang L 2018 Appl. Phys. Lett. 113 071903 [16] Vu C K, Sinha D N, Pantea C, Nihei K T, Schmitt D P and Skelt C (U.S. patent) 8 259 530 [2012-09- 4] [17] Vu C K, Sinha D N, Pantea C, Nihei K T, Schmitt D P and Skelt C (U.S. patent) 8 559 269 [2013-10-15] [18] Chillara V K, Pantea C and Sinha D N 2018 Wave Motion 76 19 [19] Köhrmann K U, Michel M S, Steidler A, Marlinghaus E, Kraut O and Alken P 2002 BJU Int. 90 248 [20] Lu J Y and Greenleaf J F 1993 Ultrason. Imaging 15 134 [21] Hasegawa K, Qiu L W, Noda A, Inoue S and Shinoda H 2017 Appl. Phys. Lett. 111 064104 [22] Turunen J, Vasara A and Friberg A T 1988 Appl. Opt. 27 3959 [23] Zhao Y, Dong H Y, Zhao S W, Min S, Cheng J, Li B, Chi F F and Liu S 2019 J. Appl. Phys. 126 065103 [24] Bai L, Dong H Y, Song G Y, Cheng Q, Huang B, Jiang W X and Cui T J 2018 Adv. Mater. Technol. 3 1800064 [25] Tarrazó-Serrano D, Castiñeira-Ibáñez S, Minin O V, Candelas P, Rubio C and Minin I V 2019 Sensors 19 378 [26] Ye L, Qiu C, Lu J, Tang K, Jia H, Ke M, Peng S and Liu Z 2016 AIP Adv. 6 085007 [27] Hsu D, Margetan F and Thompson D 1989 Appl. Phys. Lett. 55 2066 [28] Campbell J A and Soloway S 1990 J. Acoust. Soc. Am. 88 2467 [29] Shi J, Zhang C, Li P, Peng B, Li X, Liu X and Zhou W 2024 Appl. Phys. Lett. 124 202201 [30] Alvarez-Arenas T E G, Camacho J and Fritsch C 2016 Ultrasonics 67 85 [31] Alanazi A M, Venkatakrishnan S, Santos-Villalobos H, Buzzard G T and Bouman C 2023 IEEE Trans. Comput. Imaging 9 904 [32] Jiménez-Gambín S, Jiménez N, Benlloch J M and Camarena F 2019 Sci. Rep. 9 21104 [33] Candelas P, Pérez-López S and Fuster J M 2021 Sensors 21 6086 [34] Hu J, Liang B and Qiu X J 2019 Appl. Phys. Express 12 027002 [35] Tian R, Zhao H and Hu J 2024 Appl. Phys. Express 17 014003 [36] Vanel A L, Dubois M, Tronche C, Fu S, Wang Y T, Dupont G, Rakic A D, Bertling K, Abdeddaim R, Enoch S, Craster R, Li G, Guenneau S and Perchoux J 2024 New J. Phys. 26 073021 [37] Shen F F, Zhu H W, Zhu G, Shi Q F and Schulte J 2020 Chin. J. Phys. 63 201 [38] Cervenka M and Bednarík M 2021 J. Acoust. Soc. Am. 149 4534 [39] Dasila S, Krishnamurthy C V and Subramanian V 2024 J. Appl. Phys. 135 024903 [40] Deng J, Guasch O and Zheng L 2021 Int. J. Mech. Sci. 194 106179 [41] Wang C H, Qi B Y, Lin M Y, Zhang Z R, Makihata M, Liu B Y, Zhou S, Huang Y H, Hu H J, Gu Y, Chen S, Lei Y S, Lee, T, Chien S, Jang K I, Kistler E B and Xu S 2021 Nat. Biomed. Eng. 5 749 [42] Chillara V K, Pantea C and Sinha D N 2017 Appl. Phys. Lett. 110 064101 [43] Chillara V K, Davis E S, Pantea C and Sinha D N 2019 Ultrasonics 96 140 [44] Greenhall J, Chillara V K, Sinha D N and Pantea C 2021 J. Vib. Acoust. 143 064501 [45] Gamarra-Diezma J L, Miranda-Fuentes A, Llorens J, Cuenca A, Blanco-Roldán G L and Rodríguez-Lizana A 2015 Sensors 15 2902 [46] Asakura Y, Okubo K and Tagawa N 2017 Jpn. J. Appl. Phys. 56 07JC14 [47] Hutchins D A, Watson R L, Davis L A J, Akanji L, Billson D R, Burrascano P, Laureti S and Ricci M. 2020 Sensors 20 2285 [48] Govind B, Jiang X Y, Bart S and Hartwell P 2022 Sens. J. 22 145 [49] Han M L, Zhang G B and Zhang X F 2024 Ultrasonics 144 107441 [50] Ding D S 2000 Phys. Rev. E 61 2038 [51] Dai Y R and Ding D S 2011 Acta Phys. Sin. 60 124302 (in Chinese) [52] Ding D S and Huang J H 2016 Chin. Phys. B 25 124307
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.