Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(4): 040702    DOI: 10.1088/1674-1056/adb38c
GENERAL Prev   Next  

Generation of acoustical Bessel-like collimated beams using ring-excited flat plate structure transducers

Ming-Liang Han(韩明亮)1, Ruo-Yu Tang(唐若昱)2, Ning Ma(马宁)1, Guang-Bin Zhang(张光斌)1,†, and Xiao-Feng Zhang(张小凤)1
1 Shaanxi Key Laboratory of Ultrasonics, College of Physics and Information Technology, Shaanxi Normal University, Xian 710119, China;
2 College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300071, China
Abstract  This paper proposes a method to generate Bessel-like collimated beams with suppressed side lobes using the flexural vibration modes of a fixed boundary circular plate, which is excited by a longitudinally vibrating transducer in a ring excitation manner. The factors affecting the generation of Bessel-like collimated beams are investigated by theoretical analysis, numerical simulation and experimental methods. The results indicate that Bessel-like wave can be generated by a thin circular plate with fixed boundaries. The third-order mode of the circular plate can be modified to generate a collimated beam with suppressing side lobes when it is excited in a ring excitation manner and the excitation position lies between the first two nodal circles of the plate. As the excitation radius increases, the main lobe width of the resulting Bessel-like collimated beam decreases, the extent of the focusing region increases, and the amplitude of the side lobes initially increases and then decreases. Based on the simulation results, a prototype Bessel-like collimated beam generation system is made and measured experimentally. The experimental results are in good agreement with the numerical results. The Bessel-like collimated beam can be generated by the proposed system, which has potential application in the fields of long-range detection, imaging of highly attenuated materials, and airflow acceleration.
Keywords:  Bessel-like collimated beams      flat plate structure transducers      flexural vibration      ring-excited  
Received:  02 December 2024      Revised:  21 January 2025      Accepted manuscript online:  07 February 2025
PACS:  07.07.Mp (Transducers)  
  07.05.Tp (Computer modeling and simulation)  
  43.40.+s (Structural acoustics and vibration)  
  07.64.+z (Acoustic instruments and equipment)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12474440).
Corresponding Authors:  Guang-Bin Zhang     E-mail:  guangbinzhang@snnu.edu.cn

Cite this article: 

Ming-Liang Han(韩明亮), Ruo-Yu Tang(唐若昱), Ning Ma(马宁), Guang-Bin Zhang(张光斌), and Xiao-Feng Zhang(张小凤) Generation of acoustical Bessel-like collimated beams using ring-excited flat plate structure transducers 2025 Chin. Phys. B 34 040702

[1] Durnin J 1987 J. Opt. Soc. Am. A 4 651
[2] Durnin J, Miceli J J Jr and Eberly J H 1987 Phys. Rev. Lett. 58 1499
[3] Antonacci G, Caprini D and Ruocco G 2019 Appl. Phys. Lett. 114 013502
[4] Qiao X L, Cheng X M, Zhang Q, Zhang W D, Ren Z Y and Bai J T 2023 Chin. Phys. B 32 048703
[5] Jiménez N, Picó R, Sánchez-Morcillo V, Romero-García V, García- Raffi L M and Staliunas 2016 Phys. Rev. E 94 053004
[6] Mitri F G and Fellah Z E A 2008 IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 55 2469
[7] Chen B, Wu Y, Ao Z, Cai H, Nunez A, Liu Y, Foley J, Nephew K, Lu X and Guo F 2019 Lab. Chip. 19 1755
[8] Wang A T, Yu L H, Li J F and Liang X Y 2023 Chin. Phys. B 32 044201
[9] Li S Y, Shi J Y, Zhang X F and Zhang G B 2019 J. Acoust. Soc. Am. 145 3233
[10] McGloin D and Dholakia K 2005 Contemp Phys. 46 15
[11] Vetter C, Steinkopf R, Bergner K, Ornigotti M, Nolte S, Gross H and Szameit A 2019 Laser Photon. Rev. 13 1900103
[12] Ji J Y, Zheng Z G, Zhu J L, Wang L, Wang X G and Zhao S M 2024 Chin. Phys. B 33 014204
[13] Lu J Y and Greenleaf J F 1990 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37 438
[14] Lu J Y and Greenleaf J F 1992 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39 19
[15] Chen Y, Gao K, Davis E S, Sinha D N, Pantea C and Huang L 2018 Appl. Phys. Lett. 113 071903
[16] Vu C K, Sinha D N, Pantea C, Nihei K T, Schmitt D P and Skelt C (U.S. patent) 8 259 530 [2012-09- 4]
[17] Vu C K, Sinha D N, Pantea C, Nihei K T, Schmitt D P and Skelt C (U.S. patent) 8 559 269 [2013-10-15]
[18] Chillara V K, Pantea C and Sinha D N 2018 Wave Motion 76 19
[19] Köhrmann K U, Michel M S, Steidler A, Marlinghaus E, Kraut O and Alken P 2002 BJU Int. 90 248
[20] Lu J Y and Greenleaf J F 1993 Ultrason. Imaging 15 134
[21] Hasegawa K, Qiu L W, Noda A, Inoue S and Shinoda H 2017 Appl. Phys. Lett. 111 064104
[22] Turunen J, Vasara A and Friberg A T 1988 Appl. Opt. 27 3959
[23] Zhao Y, Dong H Y, Zhao S W, Min S, Cheng J, Li B, Chi F F and Liu S 2019 J. Appl. Phys. 126 065103
[24] Bai L, Dong H Y, Song G Y, Cheng Q, Huang B, Jiang W X and Cui T J 2018 Adv. Mater. Technol. 3 1800064
[25] Tarrazó-Serrano D, Castiñeira-Ibáñez S, Minin O V, Candelas P, Rubio C and Minin I V 2019 Sensors 19 378
[26] Ye L, Qiu C, Lu J, Tang K, Jia H, Ke M, Peng S and Liu Z 2016 AIP Adv. 6 085007
[27] Hsu D, Margetan F and Thompson D 1989 Appl. Phys. Lett. 55 2066
[28] Campbell J A and Soloway S 1990 J. Acoust. Soc. Am. 88 2467
[29] Shi J, Zhang C, Li P, Peng B, Li X, Liu X and Zhou W 2024 Appl. Phys. Lett. 124 202201
[30] Alvarez-Arenas T E G, Camacho J and Fritsch C 2016 Ultrasonics 67 85
[31] Alanazi A M, Venkatakrishnan S, Santos-Villalobos H, Buzzard G T and Bouman C 2023 IEEE Trans. Comput. Imaging 9 904
[32] Jiménez-Gambín S, Jiménez N, Benlloch J M and Camarena F 2019 Sci. Rep. 9 21104
[33] Candelas P, Pérez-López S and Fuster J M 2021 Sensors 21 6086
[34] Hu J, Liang B and Qiu X J 2019 Appl. Phys. Express 12 027002
[35] Tian R, Zhao H and Hu J 2024 Appl. Phys. Express 17 014003
[36] Vanel A L, Dubois M, Tronche C, Fu S, Wang Y T, Dupont G, Rakic A D, Bertling K, Abdeddaim R, Enoch S, Craster R, Li G, Guenneau S and Perchoux J 2024 New J. Phys. 26 073021
[37] Shen F F, Zhu H W, Zhu G, Shi Q F and Schulte J 2020 Chin. J. Phys. 63 201
[38] Cervenka M and Bednarík M 2021 J. Acoust. Soc. Am. 149 4534
[39] Dasila S, Krishnamurthy C V and Subramanian V 2024 J. Appl. Phys. 135 024903
[40] Deng J, Guasch O and Zheng L 2021 Int. J. Mech. Sci. 194 106179
[41] Wang C H, Qi B Y, Lin M Y, Zhang Z R, Makihata M, Liu B Y, Zhou S, Huang Y H, Hu H J, Gu Y, Chen S, Lei Y S, Lee, T, Chien S, Jang K I, Kistler E B and Xu S 2021 Nat. Biomed. Eng. 5 749
[42] Chillara V K, Pantea C and Sinha D N 2017 Appl. Phys. Lett. 110 064101
[43] Chillara V K, Davis E S, Pantea C and Sinha D N 2019 Ultrasonics 96 140
[44] Greenhall J, Chillara V K, Sinha D N and Pantea C 2021 J. Vib. Acoust. 143 064501
[45] Gamarra-Diezma J L, Miranda-Fuentes A, Llorens J, Cuenca A, Blanco-Roldán G L and Rodríguez-Lizana A 2015 Sensors 15 2902
[46] Asakura Y, Okubo K and Tagawa N 2017 Jpn. J. Appl. Phys. 56 07JC14
[47] Hutchins D A, Watson R L, Davis L A J, Akanji L, Billson D R, Burrascano P, Laureti S and Ricci M. 2020 Sensors 20 2285
[48] Govind B, Jiang X Y, Bart S and Hartwell P 2022 Sens. J. 22 145
[49] Han M L, Zhang G B and Zhang X F 2024 Ultrasonics 144 107441
[50] Ding D S 2000 Phys. Rev. E 61 2038
[51] Dai Y R and Ding D S 2011 Acta Phys. Sin. 60 124302 (in Chinese)
[52] Ding D S and Huang J H 2016 Chin. Phys. B 25 124307
[1] Effects of ramp vibrational states on flexural intrinsic vibrations in Besocke-style scanners
Zhang Hui (张辉), Jiang Guo-Zhu (蒋国珠), Liu Zhao-Qun (刘朝群), Zhang Shu-Yi (张淑仪), Fan Li (范理). Chin. Phys. B, 2013, 22(6): 068103.
[2] Stability and vibration of a helical rod with circular cross section in a viscous medium
Liu Yan-Zhu(刘延柱) and Sheng Li-Wei(盛立伟). Chin. Phys. B, 2007, 16(4): 891-896.
[3] Flexural vibration band gaps in thin plates with two-dimensional binary locally resonant structures
Yu Dian-Long (郁殿龙), Wang Gang (王刚), Liu Yao-Zong (刘耀宗), Wen Ji-Hong (温激鸿), Qiu Jing (邱静). Chin. Phys. B, 2006, 15(2): 266-271.
No Suggested Reading articles found!