Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(2): 023401    DOI: 10.1088/1674-1056/ad990f
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Characterization of nonlinear spectral linewidth and light shift in diffuse laser-cooled atoms

Yiran Yin(殷怡然), An-Ning Xu(许安宁), Jin Peng(彭瑾), and Bei Liu(刘贝)†
Key Laboratory of Laser and Infrared System, Ministry of Education, Center for Optics Research and Engineering (CORE), Shandong University, Qingdao 266237, China
Abstract  We demonstrate an integrating sphere to cool $^{87}\rm Rb$ atoms and measure the recoil-induced resonance and electromagnetically induced absorption spectrum. We measure the relationship between their linewidth and light shift with variation of the detuning and power of the cooling laser and study the performance of the diffuse laser cooling mechanism by the absorption linewidth radio $\Delta\nu_{\rm E}/\Delta\nu_{\rm R}$ and light shift $\lvert{\varDelta_{\rm R}-\varDelta_{\rm E}}\rvert$ using nonlinear spectroscopy. Specifically, when $\Delta\nu_{\rm E}/\Delta\nu_{\rm R}$ reaches a value of 1.57, the temperature and number of cold atoms achieve the optimal cooling effect. This characterization of absorption linewidth and light shift will provide a method to estimate whether diffuse light cooling achieves the best cooling effect, contributing to the future development of isotropic laser cooling for application in quantum sensing.
Keywords:  nonlinear spectrum      diffuse laser cooling      temperature measurement  
Received:  12 September 2024      Revised:  14 November 2024      Accepted manuscript online:  02 December 2024
PACS:  34.35.+a (Interactions of atoms and molecules with surfaces)  
  37.10.De (Atom cooling methods)  
  47.80.Cb (Velocity measurements)  
  82.53.Kp (Coherent spectroscopy of atoms and molecules)  
Fund: Project supported by Shandong Provincial Natural Science Foundation (Grant No. ZR2023LLZ003), the National Natural Science Foundation of China (Grant No. 62005145), Fundamental Research Fund of Shandong University, and Shandong Provincial Postdoctoral Science Foundation (Grant No. SDBX202302002).
Corresponding Authors:  Bei Liu     E-mail:  beiliu@sdu.edu.cn

Cite this article: 

Yiran Yin(殷怡然), An-Ning Xu(许安宁), Jin Peng(彭瑾), and Bei Liu(刘贝) Characterization of nonlinear spectral linewidth and light shift in diffuse laser-cooled atoms 2025 Chin. Phys. B 34 023401

[1] Fregosi A, Gabbanini C, Gozzini S, Lenci L, Marinelli C and Fioretti A 2020 Appl. Phys. Lett. 117 144102
[2] Bevilacqua G, Biancalana V, Dancheva Y and Vigilante A 2019 Appl. Phys. Lett. 115 174102
[3] Maddox B and Renzoni F 2023 Appl. Phys. Lett. 122 144001
[4] Cohen Y, Jadeja K, Sula S, Venturelli M, Deans C, Marmugi L and Renzoni F 2019 Appl. Phys. Lett. 114 073505
[5] Behbood N, Martin Ciurana F, Colangelo G, Napolitano M, Mitchell M W and Sewell R J 2013 Appl. Phys. Lett. 102 173504
[6] Taylor H A, Bounds C C, Tritt A and Turner L 2024 Phys. Rev. Appl. 22 024047
[7] Aigner S, Pietra L D, Japha Y, Entin-Wohlman O, David T, Salem R, Folman R and Schmiedmayer J 2008 Science 319 1226
[8] Martinez G D, Li C, Staron A, Kitching J, Raman C and Mc Gehee W R 2023 Nat. Commun. 14 3501
[9] Mcgilligan J P, Moore K R, Dellis A, Martinez G, de Clercq E, Griffin P, Arnold A, Riis E, Boudot R and Kitching J 2020 Appl. Phys. Lett. 117 054001
[10] Bhardwaj K, Sarkar S, Ram S, Tiwari V and Mishra S 2023 AIP Adv. 13 015108
[11] Zhang Q, Wang Y, Zhu C, Wang Y, Zhang X, Gao K and Zhang W 2020 Chin. Phys. B 29 093203
[12] Tan Z, Lu B, Han C and Lee C 2024 Chin. Phys. B 33 093701
[13] Zhang Y, Liu Q X, Sun J F, Xu Z andWang Y Z 2022 Chin. Phys. B 31 073701
[14] Budker D and Romalis M 2007 Nat. Phys. 3 227
[15] Cheng R J, Li X X, Wang Q, Liu D J, Huang Z M, Lv S Y, Zhou Y Z, Zhang S T, Li X M and Chen Z J 2024 Chin. Phys. B 33 015206
[16] Michaud F, Gattobigio G L, Tabosa J W and Kaiser R 2007 JOSA B 24 A40
[17] Zhao Y T, Su D Q, Ji Z H, Zhang H S, Xiao L T and Jia S T 2015 Chin. Phys. B 24 093701
[18] Ji Z, Zhang H, Su D, Zhao Y, Xiao L and Jia S 2018 J. Phys. Soc. Jpn. 87 024301
[19] Li J F, Wang Y F, Huang P S, Su K Y, Peng Y Q, Zhang S, Yan H and Zhu S L 2023 Phys. Rev. Appl. 20 014027
[20] Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
[21] Lezama A, Barreiro S and Akulshin A 1999 Phys. Rev. A 59 4732
[22] Ding D S, Zhou Z Y, Shi B S, Zou X B and Guo G C 2012 Chin. Phys. Lett. 29 024202
[23] Brzozowski T M, Brzozowska M, Zachorowski J, Zawada M and Gawlik W 2005 Phys. Rev. A 71 013401
[24] Grynberg G and Robilliard C 2001 Phys. Rep. 355 335
[25] Sun J, Zhao P, Hu Z, Jin S, Liao R, Liu X J and Chen X 2023 Chin. Phys. Lett. 40 083701
[26] Zhang W Z, Cheng H D, Liu L and Wang Y Z 2009 Phys. Rev. A 79 053804
[27] Wang W, Deng J and Wang Y 2015 J. Opt. Soc. Am. B 32 2441
[28] Wang W L, Dong R C, Deng J L and Wang Y Z 2016 Phys. Rev. A 93 052503
[29] Guo J, Berman P, Dubetsky B and Grynberg G 1992 Phys. Rev. A 46 1426
[30] Akulshin A, Barreiro S and Lezama A 1998 Phys. Rev. A 57 2996
[31] Di Domenico G, Mileti G and Thomann P 2001 Phys. Rev. A 64 043408
[32] Cheng H D, ZhangWZ, Ma H Y, Liu L andWang Y Z 2009 Phys. Rev. A 79 023407
[1] Deep learning-assisted common temperature measurement based on visible light imaging
Jia-Yi Zhu(朱佳仪), Zhi-Min He(何志民), Cheng Huang(黄成), Jun Zeng(曾峻), Hui-Chuan Lin(林惠川), Fu-Chang Chen(陈福昌), Chao-Qun Yu(余超群), Yan Li(李燕), Yong-Tao Zhang(张永涛), Huan-Ting Chen(陈焕庭), and Ji-Xiong Pu(蒲继雄). Chin. Phys. B, 2024, 33(8): 080701.
[2] Thermometry utilizing stored short-wavelength spin waves in cold atomic ensembles
Xingchang Wang(王兴昌), Jianmin Wang(王建民), Ying Zuo(左瀛), Liang Dong(董亮), Georgios A Siviloglou, and Jiefei Chen(陈洁菲). Chin. Phys. B, 2023, 32(7): 074206.
[3] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[4] High-precision nuclear magnetic resonance probe suitable for in situ studies of high-temperature metallic melts
Ao Li(李傲), Wei Xu(许巍), Xiao Chen(陈霄), Bing-Nan Yao(姚冰楠), Jun-Tao Huo(霍军涛), Jun-Qiang Wang(王军强), and Run-Wei Li(李润伟). Chin. Phys. B, 2022, 31(4): 040706.
[5] Characterization of premixed swirling methane/air diffusion flame through filtered Rayleigh scattering
Meng Li(李猛), Bo Yan(闫博), Shuang Chen(陈爽), Li Chen(陈力), and Jin-He Mu(母金河). Chin. Phys. B, 2022, 31(3): 034702.
[6] Quantitative temperature imaging at elevated pressures and in a confined space with CH4/air laminar flames by filtered Rayleigh scattering
Bo Yan(闫博), Li Chen(陈力), Meng Li(李猛), Shuang Chen(陈爽), Cheng Gong(龚诚), Fu-Rong Yang(杨富荣), Yun-Gang Wu(吴运刚), Jiang-Ning Zhou(周江宁), Jin-He Mu(母金河). Chin. Phys. B, 2020, 29(2): 024701.
[7] Highly sensitive optical fiber temperature sensor based on resonance in sidewall of liquid-filled silica capillary tube
Min Li(李敏), Biao Feng(冯彪), Jiwen Yin(尹辑文). Chin. Phys. B, 2019, 28(11): 114201.
[8] Shock temperature and reflectivity of precompressed H2O up to 350 GPa:Approaching the interior of planets
Zhi-Yu He(贺芝宇), Hua Shu(舒桦), Xiu-Guang Huang(黄秀光), Qi-Li Zhang(张其黎), Guo Jia(贾果), Fan Zhang(张帆), Yu-Chun Tu(涂昱淳), Jun-Yue Wang(王寯越), Jun-Jian Ye(叶君建), Zhi-Yong Xie(谢志勇), Zhi-Heng Fang(方智恒), Wen-Bing Pei(裴文兵), Si-Zu Fu(傅思祖). Chin. Phys. B, 2018, 27(12): 126202.
[9] Analysis of the blackbody-radiation shift in an ytterbium optical lattice clock
Yi-Lin Xu(徐艺琳), Xin-Ye Xu(徐信业). Chin. Phys. B, 2016, 25(10): 103202.
[10] Fast thermometry for trapped atoms using recoil-induced resonance
Zhao Yan-Ting (赵延霆), Su Dian-Qiang (苏殿强), Ji Zhong-Hua (姬中华), Zhang Hong-Shan (张洪山), Xiao Lian-Tuan (肖连团), Jia Suo-Tang (贾锁堂). Chin. Phys. B, 2015, 24(9): 093701.
[11] Temperature and number evolution of cold cesium atoms inside a wall-coated glass cell
Huang Jia-Qiang (黄家强), Zhang Jian-Wei (张建伟), Wang Shi-Guang (王时光), Wang Zheng-Bo (王正博), Wang Li-Jun (王力军). Chin. Phys. B, 2015, 24(11): 113701.
No Suggested Reading articles found!