|
|
Characterization of nonlinear spectral linewidth and light shift in diffuse laser-cooled atoms |
Yiran Yin(殷怡然), An-Ning Xu(许安宁), Jin Peng(彭瑾), and Bei Liu(刘贝)† |
Key Laboratory of Laser and Infrared System, Ministry of Education, Center for Optics Research and Engineering (CORE), Shandong University, Qingdao 266237, China |
|
|
Abstract We demonstrate an integrating sphere to cool $^{87}\rm Rb$ atoms and measure the recoil-induced resonance and electromagnetically induced absorption spectrum. We measure the relationship between their linewidth and light shift with variation of the detuning and power of the cooling laser and study the performance of the diffuse laser cooling mechanism by the absorption linewidth radio $\Delta\nu_{\rm E}/\Delta\nu_{\rm R}$ and light shift $\lvert{\varDelta_{\rm R}-\varDelta_{\rm E}}\rvert$ using nonlinear spectroscopy. Specifically, when $\Delta\nu_{\rm E}/\Delta\nu_{\rm R}$ reaches a value of 1.57, the temperature and number of cold atoms achieve the optimal cooling effect. This characterization of absorption linewidth and light shift will provide a method to estimate whether diffuse light cooling achieves the best cooling effect, contributing to the future development of isotropic laser cooling for application in quantum sensing.
|
Received: 12 September 2024
Revised: 14 November 2024
Accepted manuscript online: 02 December 2024
|
PACS:
|
34.35.+a
|
(Interactions of atoms and molecules with surfaces)
|
|
37.10.De
|
(Atom cooling methods)
|
|
47.80.Cb
|
(Velocity measurements)
|
|
82.53.Kp
|
(Coherent spectroscopy of atoms and molecules)
|
|
Fund: Project supported by Shandong Provincial Natural Science Foundation (Grant No. ZR2023LLZ003), the National Natural Science Foundation of China (Grant No. 62005145), Fundamental Research Fund of Shandong University, and Shandong Provincial Postdoctoral Science Foundation (Grant No. SDBX202302002). |
Corresponding Authors:
Bei Liu
E-mail: beiliu@sdu.edu.cn
|
Cite this article:
Yiran Yin(殷怡然), An-Ning Xu(许安宁), Jin Peng(彭瑾), and Bei Liu(刘贝) Characterization of nonlinear spectral linewidth and light shift in diffuse laser-cooled atoms 2025 Chin. Phys. B 34 023401
|
[1] Fregosi A, Gabbanini C, Gozzini S, Lenci L, Marinelli C and Fioretti A 2020 Appl. Phys. Lett. 117 144102 [2] Bevilacqua G, Biancalana V, Dancheva Y and Vigilante A 2019 Appl. Phys. Lett. 115 174102 [3] Maddox B and Renzoni F 2023 Appl. Phys. Lett. 122 144001 [4] Cohen Y, Jadeja K, Sula S, Venturelli M, Deans C, Marmugi L and Renzoni F 2019 Appl. Phys. Lett. 114 073505 [5] Behbood N, Martin Ciurana F, Colangelo G, Napolitano M, Mitchell M W and Sewell R J 2013 Appl. Phys. Lett. 102 173504 [6] Taylor H A, Bounds C C, Tritt A and Turner L 2024 Phys. Rev. Appl. 22 024047 [7] Aigner S, Pietra L D, Japha Y, Entin-Wohlman O, David T, Salem R, Folman R and Schmiedmayer J 2008 Science 319 1226 [8] Martinez G D, Li C, Staron A, Kitching J, Raman C and Mc Gehee W R 2023 Nat. Commun. 14 3501 [9] Mcgilligan J P, Moore K R, Dellis A, Martinez G, de Clercq E, Griffin P, Arnold A, Riis E, Boudot R and Kitching J 2020 Appl. Phys. Lett. 117 054001 [10] Bhardwaj K, Sarkar S, Ram S, Tiwari V and Mishra S 2023 AIP Adv. 13 015108 [11] Zhang Q, Wang Y, Zhu C, Wang Y, Zhang X, Gao K and Zhang W 2020 Chin. Phys. B 29 093203 [12] Tan Z, Lu B, Han C and Lee C 2024 Chin. Phys. B 33 093701 [13] Zhang Y, Liu Q X, Sun J F, Xu Z andWang Y Z 2022 Chin. Phys. B 31 073701 [14] Budker D and Romalis M 2007 Nat. Phys. 3 227 [15] Cheng R J, Li X X, Wang Q, Liu D J, Huang Z M, Lv S Y, Zhou Y Z, Zhang S T, Li X M and Chen Z J 2024 Chin. Phys. B 33 015206 [16] Michaud F, Gattobigio G L, Tabosa J W and Kaiser R 2007 JOSA B 24 A40 [17] Zhao Y T, Su D Q, Ji Z H, Zhang H S, Xiao L T and Jia S T 2015 Chin. Phys. B 24 093701 [18] Ji Z, Zhang H, Su D, Zhao Y, Xiao L and Jia S 2018 J. Phys. Soc. Jpn. 87 024301 [19] Li J F, Wang Y F, Huang P S, Su K Y, Peng Y Q, Zhang S, Yan H and Zhu S L 2023 Phys. Rev. Appl. 20 014027 [20] Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633 [21] Lezama A, Barreiro S and Akulshin A 1999 Phys. Rev. A 59 4732 [22] Ding D S, Zhou Z Y, Shi B S, Zou X B and Guo G C 2012 Chin. Phys. Lett. 29 024202 [23] Brzozowski T M, Brzozowska M, Zachorowski J, Zawada M and Gawlik W 2005 Phys. Rev. A 71 013401 [24] Grynberg G and Robilliard C 2001 Phys. Rep. 355 335 [25] Sun J, Zhao P, Hu Z, Jin S, Liao R, Liu X J and Chen X 2023 Chin. Phys. Lett. 40 083701 [26] Zhang W Z, Cheng H D, Liu L and Wang Y Z 2009 Phys. Rev. A 79 053804 [27] Wang W, Deng J and Wang Y 2015 J. Opt. Soc. Am. B 32 2441 [28] Wang W L, Dong R C, Deng J L and Wang Y Z 2016 Phys. Rev. A 93 052503 [29] Guo J, Berman P, Dubetsky B and Grynberg G 1992 Phys. Rev. A 46 1426 [30] Akulshin A, Barreiro S and Lezama A 1998 Phys. Rev. A 57 2996 [31] Di Domenico G, Mileti G and Thomann P 2001 Phys. Rev. A 64 043408 [32] Cheng H D, ZhangWZ, Ma H Y, Liu L andWang Y Z 2009 Phys. Rev. A 79 023407 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|