Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(1): 017502    DOI: 10.1088/1674-1056/ad9735
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Moderate electron-spin interaction in Fe-intercalated NbSe2

Qiao-Yu Liu(刘乔宇)1,2, Jian-Li Bai(白建利)1,2, Qing-Xin Dong(董庆新)1,2, Li-Bo Zhang(张黎博)1,2, Jing-Wen Cheng(程靖雯)1,2, Pin-Yu Liu(刘品宇)1,2, Cun-Dong Li(李存东)1,2, Yu Huang(黄宇)1,2, Ying-Rui Sun(孙英睿)1,2, Zhi-An Ren(任治安)1,2, and Gen-Fu Chen(陈根富)1,2,3,†
1 Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  The interaction between charge and spin degrees of freedom has always been the central issue of condensed matter physics, and transition metal dichalcogenides (TMDs) provide an ideal platform to study it benefiting from their highly tunable properties. In this article, the influence of Fe intercalation in NbSe$_{2}$ was elaborately investigated using a combination of techniques. Magnetic studies have shown that the insertion of Fe atoms induces an antiferromagnetic state in which the easy axis aligns out of the plane. The sign reversal of the magnetoresistance across the Neel temperature can be satisfactorily explained by the moderate interaction between electrons and local spins. The Hall and Seebeck measurements reveal a multi-band nature, and the contribution of various phonon scattering processes is discussed based on the thermal conductivity and specific heat data.
Keywords:  transition metal dichalcogenide      intercalation      spin-electron interaction  
Received:  18 October 2024      Revised:  15 November 2024      Accepted manuscript online:  26 November 2024
PACS:  75.50.Ee (Antiferromagnetics)  
  73.50.Lw (Thermoelectric effects)  
  73.43.Qt (Magnetoresistance)  
  63.20.K- (Phonon interactions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12274440), the National Key R&D Program of China (Grant No. 2022YFA1403903), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB33010100), and the Fund of the Synergetic Extreme Condition User Facility (SECUF).
Corresponding Authors:  Gen-Fu Chen     E-mail:  gfchen@iphy.ac.cn

Cite this article: 

Qiao-Yu Liu(刘乔宇), Jian-Li Bai(白建利), Qing-Xin Dong(董庆新), Li-Bo Zhang(张黎博), Jing-Wen Cheng(程靖雯), Pin-Yu Liu(刘品宇), Cun-Dong Li(李存东), Yu Huang(黄宇), Ying-Rui Sun(孙英睿), Zhi-An Ren(任治安), and Gen-Fu Chen(陈根富) Moderate electron-spin interaction in Fe-intercalated NbSe2 2025 Chin. Phys. B 34 017502

[1] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033
[2] Li D, Zhang X, He W, Peng Y and Xiang G 2023 Sci. China Mater. 67 279
[3] Fang H, Lyu M, Su H, Yuan J, Li Y, Xu L, Liu S, Wei L, Liu X, Yang H, Yao Q, Wang M, Guo Y, Shi W, Chen Y, Liu E and Liu Z 2023 Sci. China Mater. 66 2032
[4] Cheng Q, Xian G, Huang Y, Guo H, Pan L, Zhou H, Wang J, Lv S, Shen C, Lin X, Chen H, Li Y, Yang H and Gao H J 2023 Sci. China Mater. 66 2393
[5] Dai C, He P, Luo L, Zhan P, Guan B and Zheng J 2023 Sci. China Mater. 66 859
[6] Morosan E, Zandbergen HW, Dennis B S, Bos JWG, Onose Y, Klimczuk T, Ramirez A P, Ong N P and Cava R J 2006 Nat. Phys. 2 544
[7] Bhatt R, Bhattacharya S, Patel M, Basu R, Singh A, Sürger C, Navaneethan M, Hayakawa Y, Aswal D K and Gupta S K 2013 J. Appl. Phys. 114 114509
[8] Checkelsky J G, Lee M, Morosan E, Cava R J and Ong N P 2008 Phys. Rev. B 77 014433
[9] Chen C W, Chikara S, Zapf V S and Morosan E 2016 Phys. Rev. B 94 054406
[10] Polesya S, Mankovsky S, Ebert H, Naumov P G, Elghazali M A, SchnelleW, Medvedev S, Mangelsen S and BenschW2020 Phys. Rev. B 102 174423
[11] Wang Z, Peng X, Zhang S, Su Y, Lai S, Zhou X, Wu C, Zhou T, Wang H, Yang J, Chen B, Zhai H,Wu Q, Du J, Jiao Z and FangM2024 Chin. Phys. B 33 037301
[12] Liu P, Zhu H,Wu Q, Lu Y and Pu Y 2022 Appl. Phys. Lett. 121 081901
[13] Ham W S, Pradipto A M, Yakushiji K, Kim K, Rhim S H, Nakamura K, Shiota Y, Kim S and Ono T 2021 npj Comput. Mater. 7 129
[14] Zheng G, Wang M, Zhu X, Tan C, Wang J, Albarakati S, Aloufi N, Algarni M, Farrar L, Wu M, Yao Y, Tian M, Zhou J and Wang L 2021 Nat. Commun. 12 3639
[15] Togawa Y, Kousaka Y, Nishihara S, Inoue K, Akimitsu J, Ovchinnikov A S and Kishine J 2013 Phys. Rev. Lett. 111 197204
[16] Naik S, Pradhan A, Mishra A and Samal S L 2022 J. Phys. Chem. C 126 13762
[17] Mugiraneza S and Hallas A M 2022 Commun. Phys 5 95
[18] Yamada H and Takada S 1973 J. Phys. Soc. Jpn. 34 51
[19] Yamada H and Takada S 1973 Prog. Theor. Phys. 49 1401
[20] Negishi H, Yamada H, Yuri K, Sasaki M and Inoue M 1997 Phys. Rev. B 56 11144
[21] Yamada H and Takada S 1972 Prog. Theor. Phys. 48 1828
[22] Koh Y, Cho S, Lee J, Yang L X, Zhang Y, He C, Chen F, Feng D L, Arita M, Shimada K, Namatame H, Taniguchi M and Kim C 2013 Jpn. J. Appl. Phys. 52 10MC15
[23] Li L J, Xu Z A, Shen J Q, Qiu L M and Gan Z H 2005 J. Phys.: Condens. Matter 17 493
[24] Dong Q X, Huang Y F, Zhang L B, Bai J L, Cheng JW, Liu Q Y, Liu P Y, Li C D, Xiang J S, Wang J F, Ruan B B, Ren Z A, Sun P J and Chen G F 2023 Appl. Phys. Lett. 122 094104
[25] Watzman S J, Duine R A, Tserkovnyak Y, Boona S R, Jin H, Prakash A, Zheng Y and Heremans J P 2016 Phys. Rev. B 94 144407
[26] Chester G V and Thellung A 1961 Proc. Phys. Soc. 77 1005
[27] Vasil’ev A N, Pryadun V V, Khomskii D I, Dhalenne G, Revcolevschi A, Isobe M and Ueda Y 1998 Phys. Rev. Lett. 81 1949
[28] Callaway J and Von Baeyer H C 1960 Phys. Rev. 120 1149
[29] Pohl R O 1962 Phys. Rev. Lett. 8 481
[30] Callaway J 1959 Phys. Rev. 113 1046
[31] Agrawal B K and Verma G S 1962 Phys. Rev. 126 24
[32] Wei K, Neu J N, Lai Y, Chen K W, Hobbis D, Nolas G S, Graf D E, Siegrist T and Baumbach R E 2019 Sci. Adv. 5 eaaw6183
[33] Kovalsky A, Wang L, Marek G T, Burda C and Dyck J S 2017 J. Phys. Chem. C 121 3228
[34] Dutta M, Das A and Biswas K 2024 Inorg. Chem. 63 20068
[35] QiuW, Xi L,Wei P, Ke X, Yang J and ZhangW2014 Proc. Natl. Acad. Sci. USA 111 15031
[36] Xie H, Su X, Zhang X, Hao S, Bailey T P, Stoumpos C C, Douvalis A P, Hu X, Wolverton C, Dravid V P, Uher C, Tang X and Kanatzidis M G 2019 J. Am. Chem. Soc. 141 10905
[37] Luo H, Strychalska-Nowak J, Li J, Tao J, Klimczuk T and Cava R J 2017 Chem. Mater. 29 3704
[38] Zhou M, Shi Y, Gu Y, Yi J, Chen L, Yang Q, Ruan B, Chen G and Ren Z 2024 J. Alloys Compd. 991 174502
[1] Chiral phonons of honeycomb-type bilayer Wigner crystals
Dingrui Yang(杨丁睿), Lingyi Li(李令仪), Na Zhang(张娜), and Hongyi Yu(俞弘毅). Chin. Phys. B, 2025, 34(1): 017301.
[2] Phase changings in the surface layers of Td-WTe2 driven by alkali-metal deposition
Yu Zhu(朱玉), Zheng-Guo Wang(王政国), Yu-Jing Ren(任宇靖), Peng-Hao Yuan(袁鹏浩), Jing-Zhi Chen(陈景芝), Yi Ou(欧仪), Li-Li Meng(孟丽丽), and Yan Zhang(张焱). Chin. Phys. B, 2025, 34(1): 017302.
[3] Lewis acid-doped transition metal dichalcogenides for ultraviolet-visible photodetectors
Heng Yang(杨恒), Mingjun Ma(马明军), Yongfeng Pei(裴永峰), Yufan Kang(康雨凡), Jialu Yan(延嘉璐), Dong He(贺栋), Changzhong Jiang(蒋昌忠), Wenqing Li(李文庆), and Xiangheng Xiao(肖湘衡). Chin. Phys. B, 2024, 33(9): 098501.
[4] Manipulation of band gap in 1T-TiSe2 via rubidium deposition
Yi Ou(欧仪), Lei Chen(陈磊), Zi-Ming Xin(信子鸣), Yu-Jing Ren(任宇靖), Peng-Hao Yuan(袁鹏浩), Zheng-Guo Wang(王政国), Yu Zhu(朱玉), Jing-Zhi Chen(陈景芝), and Yan Zhang(张焱). Chin. Phys. B, 2024, 33(8): 087401.
[5] Critical behavior of quasi-two-dimensional ferromagnet Cr1.04Te2
Wei Niu(钮伟), Qin-Xin Song(宋沁心), Shi-Qi Chang(常世琦), Min Wang(王敏), Kui Yuan(袁奎), Jia-Cheng Gao(高嘉程), Shuo Wang(王硕), Zhen-Dong Wang(王振东), Kai-Fei Liu(刘凯斐), Ping Liu(刘萍), Yong-Bing Xu(徐永兵), Xiao-Qian Zhang(张晓倩), and Yong Pu(普勇). Chin. Phys. B, 2024, 33(7): 077506.
[6] Unveiling the pressure-driven metal-semiconductor-metal transition in the doped TiS2
Jiajun Chen(陈佳骏), Xindeng Lv(吕心邓), Simin Li(李思敏), Yaqian Dan(但雅倩), Yanping Huang(黄艳萍), and Tian Cui(崔田). Chin. Phys. B, 2024, 33(6): 067104.
[7] Pressure-induced structural transitions and metallization in ZrSe2
Yiping Gao(高一平), Chenchen Liu(刘晨晨), Can Tian(田灿), Chengcheng Zhu(朱程程), Xiaoli Huang(黄晓丽), and Tian Cui(崔田). Chin. Phys. B, 2024, 33(12): 126104.
[8] Intercalation of hafnium oxide between epitaxially-grown monolayer graphene and Ir(111) substrate
Yi Biao(表奕), Hong-Liang Lu(路红亮), Hao Peng(彭浩), Zhi-Peng Song(宋志朋), Hui Guo(郭辉), and Xiao Lin(林晓). Chin. Phys. B, 2023, 32(9): 098102.
[9] Pressure-induced phase transition and electronic structure evolution in layered semimetal HfTe2
Mei-Guang Zhang(张美光), Lei Chen(陈磊), Long Feng(冯龙), Huan-Huan Tuo(拓换换), Yun Zhang(张云), Qun Wei(魏群), and Pei-Fang Li(李培芳). Chin. Phys. B, 2023, 32(8): 086101.
[10] Flat band in hole-doped transition metal dichalcogenide observed by angle-resolved photoemission spectroscopy
Zilu Wang(王子禄), Haoyu Dong(董皓宇), Weichang Zhou(周伟昌), Zhihai Cheng(程志海), and Shancai Wang(王善才). Chin. Phys. B, 2023, 32(6): 067103.
[11] Er intercalation and its impact on transport properties of epitaxial graphene
Mingmin Yang(杨明敏), Yong Duan(端勇), Wenxia Kong(孔雯霞), Jinzhe Zhang(章晋哲), Jianxin Wang(王剑心), and Qun Cai(蔡群). Chin. Phys. B, 2023, 32(6): 066103.
[12] Hydrogenic donor impurity states and intersubband optical absorption spectra of monolayer transition metal dichalcogenides in dielectric environments
Shu-Dong Wu(吴曙东). Chin. Phys. B, 2023, 32(5): 057303.
[13] Moiré Dirac fermions in transition metal dichalcogenides heterobilayers
Chenglong Che(车成龙), Yawei Lv(吕亚威), and Qingjun Tong(童庆军). Chin. Phys. B, 2023, 32(10): 107307.
[14] Melting of electronic/excitonic crystals in 2D semiconductor moiré patterns: A perspective from the Lindemann criterion
Jiyong Zhou(周纪勇), Jianju Tang(唐剑炬), and Hongyi Yu(俞弘毅). Chin. Phys. B, 2023, 32(10): 107308.
[15] Valley polarization in transition metal dichalcogenide layered semiconductors: Generation, relaxation, manipulation and transport
Hui Ma(马惠), Yaojie Zhu(朱耀杰), Yulun Liu(刘宇伦), Ruixue Bai(白瑞雪), Xilin Zhang(张喜林), Yanbo Ren(任琰博), and Chongyun Jiang(蒋崇云). Chin. Phys. B, 2023, 32(10): 107201.
No Suggested Reading articles found!