CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Moderate electron-spin interaction in Fe-intercalated NbSe2 |
Qiao-Yu Liu(刘乔宇)1,2, Jian-Li Bai(白建利)1,2, Qing-Xin Dong(董庆新)1,2, Li-Bo Zhang(张黎博)1,2, Jing-Wen Cheng(程靖雯)1,2, Pin-Yu Liu(刘品宇)1,2, Cun-Dong Li(李存东)1,2, Yu Huang(黄宇)1,2, Ying-Rui Sun(孙英睿)1,2, Zhi-An Ren(任治安)1,2, and Gen-Fu Chen(陈根富)1,2,3,† |
1 Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract The interaction between charge and spin degrees of freedom has always been the central issue of condensed matter physics, and transition metal dichalcogenides (TMDs) provide an ideal platform to study it benefiting from their highly tunable properties. In this article, the influence of Fe intercalation in NbSe$_{2}$ was elaborately investigated using a combination of techniques. Magnetic studies have shown that the insertion of Fe atoms induces an antiferromagnetic state in which the easy axis aligns out of the plane. The sign reversal of the magnetoresistance across the Neel temperature can be satisfactorily explained by the moderate interaction between electrons and local spins. The Hall and Seebeck measurements reveal a multi-band nature, and the contribution of various phonon scattering processes is discussed based on the thermal conductivity and specific heat data.
|
Received: 18 October 2024
Revised: 15 November 2024
Accepted manuscript online: 26 November 2024
|
PACS:
|
75.50.Ee
|
(Antiferromagnetics)
|
|
73.50.Lw
|
(Thermoelectric effects)
|
|
73.43.Qt
|
(Magnetoresistance)
|
|
63.20.K-
|
(Phonon interactions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12274440), the National Key R&D Program of China (Grant No. 2022YFA1403903), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB33010100), and the Fund of the Synergetic Extreme Condition User Facility (SECUF). |
Corresponding Authors:
Gen-Fu Chen
E-mail: gfchen@iphy.ac.cn
|
Cite this article:
Qiao-Yu Liu(刘乔宇), Jian-Li Bai(白建利), Qing-Xin Dong(董庆新), Li-Bo Zhang(张黎博), Jing-Wen Cheng(程靖雯), Pin-Yu Liu(刘品宇), Cun-Dong Li(李存东), Yu Huang(黄宇), Ying-Rui Sun(孙英睿), Zhi-An Ren(任治安), and Gen-Fu Chen(陈根富) Moderate electron-spin interaction in Fe-intercalated NbSe2 2025 Chin. Phys. B 34 017502
|
[1] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033 [2] Li D, Zhang X, He W, Peng Y and Xiang G 2023 Sci. China Mater. 67 279 [3] Fang H, Lyu M, Su H, Yuan J, Li Y, Xu L, Liu S, Wei L, Liu X, Yang H, Yao Q, Wang M, Guo Y, Shi W, Chen Y, Liu E and Liu Z 2023 Sci. China Mater. 66 2032 [4] Cheng Q, Xian G, Huang Y, Guo H, Pan L, Zhou H, Wang J, Lv S, Shen C, Lin X, Chen H, Li Y, Yang H and Gao H J 2023 Sci. China Mater. 66 2393 [5] Dai C, He P, Luo L, Zhan P, Guan B and Zheng J 2023 Sci. China Mater. 66 859 [6] Morosan E, Zandbergen HW, Dennis B S, Bos JWG, Onose Y, Klimczuk T, Ramirez A P, Ong N P and Cava R J 2006 Nat. Phys. 2 544 [7] Bhatt R, Bhattacharya S, Patel M, Basu R, Singh A, Sürger C, Navaneethan M, Hayakawa Y, Aswal D K and Gupta S K 2013 J. Appl. Phys. 114 114509 [8] Checkelsky J G, Lee M, Morosan E, Cava R J and Ong N P 2008 Phys. Rev. B 77 014433 [9] Chen C W, Chikara S, Zapf V S and Morosan E 2016 Phys. Rev. B 94 054406 [10] Polesya S, Mankovsky S, Ebert H, Naumov P G, Elghazali M A, SchnelleW, Medvedev S, Mangelsen S and BenschW2020 Phys. Rev. B 102 174423 [11] Wang Z, Peng X, Zhang S, Su Y, Lai S, Zhou X, Wu C, Zhou T, Wang H, Yang J, Chen B, Zhai H,Wu Q, Du J, Jiao Z and FangM2024 Chin. Phys. B 33 037301 [12] Liu P, Zhu H,Wu Q, Lu Y and Pu Y 2022 Appl. Phys. Lett. 121 081901 [13] Ham W S, Pradipto A M, Yakushiji K, Kim K, Rhim S H, Nakamura K, Shiota Y, Kim S and Ono T 2021 npj Comput. Mater. 7 129 [14] Zheng G, Wang M, Zhu X, Tan C, Wang J, Albarakati S, Aloufi N, Algarni M, Farrar L, Wu M, Yao Y, Tian M, Zhou J and Wang L 2021 Nat. Commun. 12 3639 [15] Togawa Y, Kousaka Y, Nishihara S, Inoue K, Akimitsu J, Ovchinnikov A S and Kishine J 2013 Phys. Rev. Lett. 111 197204 [16] Naik S, Pradhan A, Mishra A and Samal S L 2022 J. Phys. Chem. C 126 13762 [17] Mugiraneza S and Hallas A M 2022 Commun. Phys 5 95 [18] Yamada H and Takada S 1973 J. Phys. Soc. Jpn. 34 51 [19] Yamada H and Takada S 1973 Prog. Theor. Phys. 49 1401 [20] Negishi H, Yamada H, Yuri K, Sasaki M and Inoue M 1997 Phys. Rev. B 56 11144 [21] Yamada H and Takada S 1972 Prog. Theor. Phys. 48 1828 [22] Koh Y, Cho S, Lee J, Yang L X, Zhang Y, He C, Chen F, Feng D L, Arita M, Shimada K, Namatame H, Taniguchi M and Kim C 2013 Jpn. J. Appl. Phys. 52 10MC15 [23] Li L J, Xu Z A, Shen J Q, Qiu L M and Gan Z H 2005 J. Phys.: Condens. Matter 17 493 [24] Dong Q X, Huang Y F, Zhang L B, Bai J L, Cheng JW, Liu Q Y, Liu P Y, Li C D, Xiang J S, Wang J F, Ruan B B, Ren Z A, Sun P J and Chen G F 2023 Appl. Phys. Lett. 122 094104 [25] Watzman S J, Duine R A, Tserkovnyak Y, Boona S R, Jin H, Prakash A, Zheng Y and Heremans J P 2016 Phys. Rev. B 94 144407 [26] Chester G V and Thellung A 1961 Proc. Phys. Soc. 77 1005 [27] Vasil’ev A N, Pryadun V V, Khomskii D I, Dhalenne G, Revcolevschi A, Isobe M and Ueda Y 1998 Phys. Rev. Lett. 81 1949 [28] Callaway J and Von Baeyer H C 1960 Phys. Rev. 120 1149 [29] Pohl R O 1962 Phys. Rev. Lett. 8 481 [30] Callaway J 1959 Phys. Rev. 113 1046 [31] Agrawal B K and Verma G S 1962 Phys. Rev. 126 24 [32] Wei K, Neu J N, Lai Y, Chen K W, Hobbis D, Nolas G S, Graf D E, Siegrist T and Baumbach R E 2019 Sci. Adv. 5 eaaw6183 [33] Kovalsky A, Wang L, Marek G T, Burda C and Dyck J S 2017 J. Phys. Chem. C 121 3228 [34] Dutta M, Das A and Biswas K 2024 Inorg. Chem. 63 20068 [35] QiuW, Xi L,Wei P, Ke X, Yang J and ZhangW2014 Proc. Natl. Acad. Sci. USA 111 15031 [36] Xie H, Su X, Zhang X, Hao S, Bailey T P, Stoumpos C C, Douvalis A P, Hu X, Wolverton C, Dravid V P, Uher C, Tang X and Kanatzidis M G 2019 J. Am. Chem. Soc. 141 10905 [37] Luo H, Strychalska-Nowak J, Li J, Tao J, Klimczuk T and Cava R J 2017 Chem. Mater. 29 3704 [38] Zhou M, Shi Y, Gu Y, Yi J, Chen L, Yang Q, Ruan B, Chen G and Ren Z 2024 J. Alloys Compd. 991 174502 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|